Author:
Fernandes Marta,Westover M. Brandon,Zafar Sahar F.
Abstract
Abstract
Background
Continuous electroencephalography (cEEG) is increasingly utilized in hospitalized patients to detect and treat seizures. Epidemiologic and observational studies using administrative datasets can provide insights into the comparative and cost effectiveness of cEEG utilization. Defining patient cohorts that underwent acute inpatient cEEG from administrative datasets is limited by the lack of validated codes differentiating elective epilepsy monitoring unit (EMU) admissions from acute inpatient hospitalization with cEEG utilization. Our aim was to develop hospital administrative data-based models to identify acute inpatient admissions with cEEG monitoring and distinguish them from EMU admissions.
Methods
This was a single center retrospective cohort study of adult (≥ 18 years old) inpatient admissions with a cEEG procedure (EMU or acute inpatient) between January 2016-April 2022. The gold standard for acute inpatient cEEG vs. EMU was obtained from the local EEG recording platform. An extreme gradient boosting model was trained to classify admissions as acute inpatient cEEG vs. EMU using administrative data including demographics, diagnostic and procedure codes, and medications.
Results
There were 9,523 patients in our cohort with 10,783 hospital admissions (8.5% EMU, 91.5% acute inpatient cEEG); with average age of 59 (SD 18.2) years; 46.2% were female. The model achieved an area under the receiver operating curve of 0.92 (95% CI [0.91–0.94]) and area under the precision-recall curve of 0.99 [0.98–0.99] for classification of acute inpatient cEEG.
Conclusions
Our model has the potential to identify cEEG monitoring admissions in larger cohorts and can serve as a tool to enable large-scale, administrative data-based studies of EEG utilization.
Funder
National Institutes of Health
National Science Foundation
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Herman ST, Abend NS, Bleck TP, Chapman KE, Drislane FW, Emerson RG, et al. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol off Publ Am Electroencephalogr Soc. 2015;32(2):87–95.
2. Ney JP, van der Goes DN, Nuwer MR, Nelson L, Eccher MA. Continuous and routine EEG in intensive care: utilization and outcomes, United States 2005–2009. Neurology. 2013;81(23):2002–8.
3. Hill CE, Blank LJ, Thibault D, Davis KA, Dahodwala N, Litt B, et al. Continuous EEG is associated with favorable hospitalization outcomes for critically ill patients. Neurology. 2019;92(1):e9–18.
4. Zafar SF, Postma EN, Biswal S, Boyle EJ, Bechek S, O’Connor K, et al. Effect of epileptiform abnormality burden on neurologic outcome and antiepileptic drug management after subarachnoid Hemorrhage. Clin Neurophysiol off J Int Fed Clin Neurophysiol. 2018;129(11):2219–27.
5. Dhakar MB, Sheikh Z, Kumari P, Lawson EC, Jeanneret V, Desai D, et al. Epileptiform Abnormalities in Acute ischemic Stroke: impact on Clinical Management and outcomes. J Clin Neurophysiol off Publ Am Electroencephalogr Soc. 2022;39(6):446–52.