Abstract
Abstract
Background
Since operating rooms are a major bottleneck resource and an important revenue driver in hospitals, it is important to use these resources efficiently. Studies estimate that between 60 and 70% of hospital admissions are due to surgeries. Furthermore, staffing cannot be changed daily to respond to changing demands. The resulting high complexity in operating room management necessitates perpetual process evaluation and the use of decision support tools. In this study, we evaluate several management policies and their consequences for the operating theater of the University Hospital Augsburg.
Methods
Based on a data set with 12,946 surgeries, we evaluate management policies such as parallel induction of anesthesia with varying levels of staff support, the use of a dedicated emergency room, extending operating room hours reserved as buffer capacity, and different elective patient sequencing policies. We develop a detailed simulation model that serves to capture the process flow in the entire operating theater: scheduling surgeries from a dynamically managed waiting list, handling various types of schedule disruptions, rescheduling and prioritizing postponed and deferred surgeries, and reallocating operating room capacity. The system performance is measured by indicators such as patient waiting time, idle time, staff overtime, and the number of deferred surgeries.
Results
We identify significant trade-offs between expected waiting times for different patient urgency categories when operating rooms are opened longer to serve as end-of-day buffers. The introduction of parallel induction of anesthesia allows for additional patients to be scheduled and operated on during regular hours. However, this comes with a higher number of expected deferrals, which can be partially mitigated by employing additional anesthesia teams. Changes to the sequencing of elective patients according to their expected surgery duration cause expectable outcomes for a multitude of performance indicators.
Conclusions
Our simulation-based approach allows operating theater managers to test a multitude of potential changes in operating room management without disrupting the ongoing workflow. The close collaboration between management and researchers in the design of the simulation framework and the data analysis has yielded immediate benefits for the scheduling policies and data collection efforts at our practice partner.
Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Chagaturu S, Vallabhaneni S. Aiding and abetting - nursing crises at home and abroad. N Engl J Med. 2005;353(17):1761–3.
2. Guerriero F, Guido R. Operational research in the management of the operating theatre: a survey. Health Care Management Science. 2011;14(1):89–114.
3. Denton B, Viapiano J, Vogl A. Optimization of surgery sequencing and scheduling decisions under uncertainty. Health Care Management Science. 2007;10(1):13–24.
4. Denton, B. T., Rahman, A. S., Nelson, H., & Bailey, A. C. (2006). Simulation of a multiple operating room surgical suite. In Simulation Conference, 2006. WSC 06. Proceedings of the Winter Conference. 414-424.
5. Dexter F, Macario A, Traub RD, Hopwood M, Lubarsky DA. An operating room scheduling strategy to maximize the use of operating room block time: computer simulation of patient scheduling and survey of patients' preferences for surgical waiting time. Anesth Analg. 1999;89(1):7–20.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献