Predictis: an IoT and machine learning-based system to predict risk level of cardio-vascular diseases

Author:

Islam Muhammad Nazrul,Raiyan Kazi Rafid,Mitra Shutonu,Mannan M. M. Rushadul,Tasnim Tasfia,Putul Asima Oshin,Mandol Angshu Bikash

Abstract

Abstract Background Despite technological advancement in the field of healthcare, the worldwide burden of illness caused by cardio-vascular diseases (CVDs) is rising, owing mostly to a sharp increase in developing nations that are undergoing fast health transitions. People have been experimenting with techniques to extend their lives since ancient times. Despite this, technology is still a long way from attaining the aim of lowering mortality rates. Methods From methodological perspective, a design Science Research (DSR) approach is adopted in this research. As such, to investigate the current healthcare and interaction systems created for predicting cardiac disease for patients, we first analyzed the body of existing literature. After that, a conceptual framework of the system was designed using the gathered requirements. Based on the conceptual framework, the development of different components of the system was completed. Finally, the evaluation study procedure was developed taking into account the effectiveness, usability and efficiency of the developed system. Results To attain the objectives, we proposed a system consisting of a wearable device and mobile application, which allows the users to know their risk levels of having CVDs in the future. The Internet of Things (IoT) and Machine Learning (ML) techniques were adopted to develop the system that can classify its users into three risk levels (high, moderate and low risk of having CVD) with an F1 score of 80.4% and two risk levels (high and low risk of having CVD) with an F1 score of 91%. The stacking classifier incorporating best-performing ML algorithms was used for predicting the risk levels of the end-users utilizing the UCI Repository dataset. Conclusion The resultant system allows the users to check and monitor their possibility of having CVD in near future using real-time data. Also, the system was evaluated from the Human-Computer Interaction (HCI) point of view. Thus, the created system offers a promising resolution to the current biomedical sector. Trial Registration Not Applicable.

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3