Needs and expectations for artificial intelligence in emergency medicine according to Canadian physicians

Author:

Eastwood Kyle W.ORCID,May Ronald,Andreou PantelisORCID,Abidi SaminaORCID,Abidi Syed Sibte RazaORCID,Loubani Osama M.ORCID

Abstract

Abstract Background Artificial Intelligence (AI) is recognized by emergency physicians (EPs) as an important technology that will affect clinical practice. Several AI-tools have already been developed to aid care delivery in emergency medicine (EM). However, many EM tools appear to have been developed without a cross-disciplinary needs assessment, making it difficult to understand their broader importance to general-practice. Clinician surveys about AI tools have been conducted within other medical specialties to help guide future design. This study aims to understand the needs of Canadian EPs for the apt use of AI-based tools. Methods A national cross-sectional, two-stage, mixed-method electronic survey of Canadian EPs was conducted from January-May 2022. The survey includes demographic and physician practice-pattern data, clinicians’ current use and perceptions of AI, and individual rankings of which EM work-activities most benefit from AI. Results The primary outcome is a ranked list of high-priority AI-tools for EM that physicians want translated into general use within the next 10 years. When ranking specific AI examples, ‘automated charting/report generation’, ‘clinical prediction rules’ and ‘monitoring vitals with early-warning detection’ were the top items. When ranking by physician work-activities, ‘AI-tools for documentation’, ‘AI-tools for computer use’ and ‘AI-tools for triaging patients’ were the top items. For secondary outcomes, EPs indicated AI was ‘likely’ (43.1%) or ‘extremely likely’ (43.7%) to be able to complete the task of ‘documentation’ and indicated either ‘a-great-deal’ (32.8%) or ‘quite-a-bit’ (39.7%) of potential for AI in EM. Further, EPs were either ‘strongly’ (48.5%) or ‘somewhat’ (39.8%) interested in AI for EM. Conclusions Physician input on the design of AI is essential to ensure the uptake of this technology. Translation of AI-tools to facilitate documentation is considered a high-priority, and respondents had high confidence that AI could facilitate this task. This study will guide future directions regarding the use of AI for EM and help direct efforts to address prevailing technology-translation barriers such as access to high-quality application-specific data and developing reporting guidelines for specific AI-applications. With a prioritized list of high-need AI applications, decision-makers can develop focused strategies to address these larger obstacles.

Funder

Nova Scotia Health Research Fund

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3