Abstract
Abstract
Background
Prematurity is still the leading cause of global neonatal mortality, Rwanda included, even though advanced medical technology has improved survival. Initial hospitalization of premature babies (PBs) is associated with high costs which have an impact on Rwanda’s health budget. In Rwanda, these costs are not known, while knowing them would allow better planning, hence the purpose and motivation for this research.
Methods
This was a prospective cost of illness study using a prevalence approach conducted in 5 hospitals (University Teaching Hospital of Butare, Gisenyi, Masaka, Muhima, and Ruhengeri). It included PBs admitted from June to July 2021 followed up prospectively to determine the medical direct costs (MDC) by enumerating the cost of all inputs. Descriptive analyses and ordinary least squares regression were used to illustrate factors associated with and predictive of mean cost. The significance level was set at p < 0.05.
Results
A total of 123 PBs were included. Very preterm and moderate PBs were 36.6% and 23.6% respectively and the average birth weight (BW) was 1724 g (SD: 408.1 g). The overall mean MDC was $237.7 per PB (SD: $294.9) representing 28% of Gross Domestic Product (GDP) per capita per year. Costs per PB varied with weight category, prematurity degree, hospital level, and length of stay (LoS) among other variables. MDC was dominated by drugs and supplies (65%) with oxygen being an influential driver of MDC accounting for 38.4% of total MDC. Birth weight, oxygen therapy, and hospital level were significant MDC predictive factors.
Conclusion
This study provides an in-depth understanding of MDC of initial hospitalization of PBs in Rwanda. It also indicates predictive factors, including birth weight, which can be managed through measures to prevent or delay preterm birth.
Implication for prematurity prevention and management
The results suggest a need to revise the benefits and entitlements of insured people to include drugs and interventions not covered that are essential and where there are no alternatives. Having oxygen plants in hospitals may reduce oxygen-related costs. Furthermore, interventions to reduce prematurity should be evaluated using cost-effectiveness analysis since its overall burden is high.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. WHO. 2018. Preterm birth. http://www.who.int/en/news-room/factsheets/detail/preterm-birth
2. WHO, March of Dimes, PMNCH, Save the Children. 15 million preterm births: Priorities for action based on national, regional and global estimates. In: Howson CP, Kinney MV, Lawn J, editors. Born Too Soon: The Global Action Report on Preterm Birth; 2012.
3. United Nations Inter-agency Group for Child Mortality Estimation (UNIGME). ‘Levels & Trends in Child Mortality: Report. Estimates developed by the United Nations Inter-agency Group for Child Mortality Estimation. Report 2020. Accessible through: https://www.who.int.
4. United Nations Inter-agency Group for Child Mortality Estimation (UNIGME). ‘Levels & Trends in Child Mortality: Report. Estimates developed by the United Nations Inter-agency Group for Child Mortality Estimation. Report 2019. Accessible through: https://www.unicef.org.
5. Nsereko E, Uwase E, Mukabutera A, et al. Maternal genitourinary infections and poor nutritional status increase risk of preterm birth in Gasabo District, Rwanda: a prospective, longitudinal, cohort study. BMC Pregnancy Childbirth. 2020;20:345.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献