(Dis)concordance of comorbidity data and cancer status across administrative datasets, medical charts, and self-reports

Author:

Sheriffdeen A.,Millar J. L.,Martin C.,Evans M.,Tikellis G.,Evans S. M.ORCID

Abstract

Abstract Background Benchmarking outcomes across settings commonly requires risk-adjustment for co-morbidities that must be derived from extant sources that were designed for other purposes. A question arises as to the extent to which differing available sources for health data will be concordant when inferring the type and severity of co-morbidities, how close are these to the “truth”. We studied the level of concordance for same-patient comorbidity data extracted from administrative data (coded from International Classification of Diseases, Australian modification,10th edition [ICD-10 AM]), from the medical chart audit, and data self-reported by men with prostate cancer who had undergone a radical prostatectomy. Methods We included six hospitals (5 public and 1 private) contributing to the Prostate Cancer Outcomes Registry-Victoria (PCOR-Vic) in the study. Eligible patients from the PCOR-Vic underwent a radical prostatectomy between January 2017 and April 2018.Health Information Manager’s in each hospital, provided each patient’s associated administrative ICD-10 AM comorbidity codes. Medical charts were reviewed to extract comorbidity data. The self-reported comorbidity questionnaire (SCQ) was distributed through PCOR-Vic to eligible men. Results The percentage agreement between the administrative data, medical charts and self-reports ranged from 92 to 99% in the 122 patients from the 217 eligible participants who responded to the questionnaire. The presence of comorbidities showed a poor level of agreement between data sources. Conclusion Relying on a single data source to generate comorbidity indices for risk-modelling purposes may fail to capture the reality of a patient’s disease profile. There does not appear to be a ‘gold-standard’ data source for the collection of data on comorbidities.

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

Reference43 articles.

1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. Cancer J Clin. 2014;64(1):9–29.

2. Cancer Australia. Prostate cancer statistics: Australian Government 2018. Available from: https://prostate-cancer.canceraustralia.gov.au/statistics.

3. Gliklich RE, Dreyer NA, Leavy MBAHRQ. Methods for Effective Health Care. Registries for Evaluating Patient Outcomes: A User's Guide. Rockville: Agency for Healthcare Research and Quality (US); 2014.

4. McNeil J, Evans S, Brennan A, Read C., editor. Registry Science Handbook. Melbourne; Monash University; 2017.

5. Evans SM, Millar JL, Wood JM, Davis ID, Bolton D, Giles GG, et al. The Prostate Cancer Registry: monitoring patterns and quality of care for men diagnosed with prostate cancer. BJU Int. 2013;111(4b):E158–66.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3