Predicting hospital length of stay using machine learning on a large open health dataset

Author:

Jain Raunak,Singh Mrityunjai,Rao A. Ravishankar,Garg Rahul

Abstract

Abstract Background Governments worldwide are facing growing pressure to increase transparency, as citizens demand greater insight into decision-making processes and public spending. An example is the release of open healthcare data to researchers, as healthcare is one of the top economic sectors. Significant information systems development and computational experimentation are required to extract meaning and value from these datasets. We use a large open health dataset provided by the New York State Statewide Planning and Research Cooperative System (SPARCS) containing 2.3 million de-identified patient records. One of the fields in these records is a patient’s length of stay (LoS) in a hospital, which is crucial in estimating healthcare costs and planning hospital capacity for future needs. Hence it would be very beneficial for hospitals to be able to predict the LoS early. The area of machine learning offers a potential solution, which is the focus of the current paper. Methods We investigated multiple machine learning techniques including feature engineering, regression, and classification trees to predict the length of stay (LoS) of all the hospital procedures currently available in the dataset. Whereas many researchers focus on LoS prediction for a specific disease, a unique feature of our model is its ability to simultaneously handle 285 diagnosis codes from the Clinical Classification System (CCS). We focused on the interpretability and explainability of input features and the resulting models. We developed separate models for newborns and non-newborns. Results The study yields promising results, demonstrating the effectiveness of machine learning in predicting LoS. The best R2 scores achieved are noteworthy: 0.82 for newborns using linear regression and 0.43 for non-newborns using catboost regression. Focusing on cardiovascular disease refines the predictive capability, achieving an improved R2 score of 0.62. The models not only demonstrate high performance but also provide understandable insights. For instance, birth-weight is employed for predicting LoS in newborns, while diagnostic-related group classification proves valuable for non-newborns. Conclusion Our study showcases the practical utility of machine learning models in predicting LoS during patient admittance. The emphasis on interpretability ensures that the models can be easily comprehended and replicated by other researchers. Healthcare stakeholders, including providers, administrators, and patients, stand to benefit significantly. The findings offer valuable insights for cost estimation and capacity planning, contributing to the overall enhancement of healthcare management and delivery.

Publisher

Springer Science and Business Media LLC

Reference84 articles.

1. Gurría A. Openness and Transparency - Pillars for Democracy, Trust and Progress. OECD.org. Available: https://www.oecd.org/unitedstates/opennessandtransparency-pillarsfordemocracytrustandprogress.htm. Accessed 28 June 2024.

2. Jetzek T. The Sustainable Value of Open Government Data: Uncovering the Generative Mechanisms of Open Data through a Mixed Methods Approach. lCopenhagen Business School, Institut for IT-Ledelse Department of IT Management. 2015.

3. Move fast and heal things: How health care is turning into a consumer product. The Economist. 2022. https://www.economist.com/business/how-health-care-is-turning-into-a-consumer-product/21807114. Accessed 28 June 2024.

4. New York State Department Of Health, Statewide Planning and Research Cooperative System (SPARCS). https://www.health.ny.gov/statistics/sparcs/. Accessed 5 Oct 2022.

5. Rao AR, Chhabra A, Das R, Ruhil V. A framework for analyzing publicly available healthcare data. In 2015 17th International Conference on E-health Networking, Application & Services (IEEE HealthCom). 2015: IEEE, pp. 653–656.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3