Estimating population-based coverage of reproductive, maternal, newborn, and child health (RMNCH) interventions from health management information systems: a comprehensive review

Author:

Mwinnyaa George,Hazel Elizabeth,Maïga Abdoulaye,Amouzou Agbessi

Abstract

Abstract Background Routinely collected health facility data usually captured and stored in Health Management Information Systems (HMIS) are potential sources of data for frequent and local disaggregated estimation of the coverage of reproductive, maternal, newborn, and child health interventions (RMNCH), but have been under-utilized due to concerns over data quality. We reviewed methods for estimation of national or subnational coverage of RMNCH interventions using HMIS data exclusively or in conjunction with survey data from low- and middle-income countries (LMICs). Methods We conducted a comprehensive review of studies indexed in PubMed and Scopus to identify potential papers based on predefined search terms. Two reviewers screened the papers using defined inclusion and exclusion criteria. Following sequences of title, abstract and full paper reviews, we retained 18 relevant papers. Results 12 papers used only HMIS data and 6 used both HMIS and survey data. There is enormous lack of standards in the existing methods for estimating RMNCH intervention coverage; all appearing to be highly author dependent. The denominators for coverage measures were estimated using census, non-census and combined projection-based methods. No satisfactory methods were found for treatment-based coverage indicators for which the estimation of target population requires the population prevalence of underlying conditions. The estimates of numerators for the coverage measures were obtained from the count of users or visits and in some cases correction for completeness of reporting in the HMIS following an assessment of data quality. Conclusions Standard methods for correcting numerators from HMIS data for accurate estimation of coverage of RMNCH interventions are needed to expand the use of these data. More research and investments are required to improve denominators for health facility-derived statistics. Improvement in routine data quality and analytical methods would allow for timely estimation of RMNCH intervention coverage at the national and subnational levels.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3