Abstract
Abstract
Background
Rising health care costs are a major public health issue. Thus, accurately predicting future costs and understanding which factors contribute to increases in health care expenditures are important. The objective of this project was to predict patients healthcare costs development in the subsequent year and to identify factors contributing to this prediction, with a particular focus on the role of pharmacotherapy.
Methods
We used 2014–2015 Swiss health insurance claims data on 373′264 adult patients to classify individuals’ changes in health care costs. We performed extensive feature generation and developed predictive models using logistic regression, boosted decision trees and neural networks. Based on the decision tree model, we performed a detailed feature importance analysis and subgroup analysis, with an emphasis on drug classes.
Results
The boosted decision tree model achieved an overall accuracy of 67.6% and an area under the curve-score of 0.74; the neural network and logistic regression models performed 0.4 and 1.9% worse, respectively. Feature engineering played a key role in capturing temporal patterns in the data. The number of features was reduced from 747 to 36 with only a 0.5% loss in the accuracy. In addition to hospitalisation and outpatient physician visits, 6 drug classes and the mode of drug administration were among the most important features. Patient subgroups with a high probability of increase (up to 88%) and decrease (up to 92%) were identified.
Conclusions
Pharmacotherapy provides important information for predicting cost increases in the total population. Moreover, its relative importance increases in combination with other features, including health care utilisation.
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. Pritchard D, Petrilla A, Hallinan S, et al. What contributes Most to high health care costs? Health care spending in high resource patients. JMCP. 2016;22(2):102–9.
2. Hu Z, Hao S, Jin B, et al. Online prediction of health care utilization in the next six months based on electronic health record information: a cohort and validation study. J Med Internet Res. 2015;17(9):e219.
3. World Health Organisation Global Health Observatory data repository 2019 [Available from: http://apps.who.int/gho/data/view.main.GHEDCHEGDPSHA2011REGv?lang=en.] Accessed 2 Feb. 2019.
4. Bertsimas D, Bjarnadóttir MV, Kane MA, et al. Algorithmic prediction of health-care costs. Oper Res. 2008;56(6):1382–92.
5. Powers CA, Meyer CM, Roebuck MC, et al. Predictive modeling of Total healthcare costs using pharmacy claims data: a comparison of alternative econometric cost modeling techniques. Med Care. 2005;43(11):1065–72.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献