The impact of the genome-wide supported variant in the cyclin M2 gene on gray matter morphology in schizophrenia
-
Published:2013-10-25
Issue:1
Volume:9
Page:
-
ISSN:1744-9081
-
Container-title:Behavioral and Brain Functions
-
language:en
-
Short-container-title:Behav Brain Funct
Author:
Ohi Kazutaka,Hashimoto Ryota,Yamamori Hidenaga,Yasuda Yuka,Fujimoto Michiko,Umeda-Yano Satomi,Fukunaga Masaki,Watanabe Yoshiyuki,Iwase Masao,Kazui Hiroaki,Takeda Masatoshi
Abstract
Abstract
Background
Genome-wide significant associations of schizophrenia with eight SNPs in the CNNM2, MIR137, PCGEM1, TRIM26, CSMD1, MMP16, NT5C2 and CCDC68 genes have been identified in a recent mega-analysis of genome-wide association studies. To date, the role of these SNPs on gray matter (GM) volumes remains unclear.
Methods
After performing quality control for minor-allele frequency > 5% using a JPT HapMap sample and our sample, a genotyping call rate > 95% and Hardy-Weinberg equilibrium testing (p > 0.01), five of eight SNPs were eligible for analysis. We used a comprehensive voxel-based morphometry (VBM) technique to investigate the effects of these five SNPs on GM volumes between major-allele homozygotes and minor-allele carriers in Japanese patients with schizophrenia (n = 173) and healthy subjects (n = 449).
Results
The rs7914558 risk variant at CNNM2 was associated with voxel-based GM volumes in the bilateral inferior frontal gyri (right T = 4.96, p = 0.0088, left T = 4.66, p = 0.031). These peak voxels, which were affected by the variant, existed in the orbital region of the inferior frontal gyri. Individuals with the risk G/G genotype of rs7914558 had smaller GM volumes in the bilateral inferior frontal gyri than carriers of the non-risk A-allele. Although several effects of the genotype and the genotype-diagnosis interaction of other SNPs on GM volumes were observed in the exploratory VBM analyses, these effects did not remain after the FWE- correction for multiple tests (p > 0.05).
Conclusions
Our findings suggest that the genetic variant in the CNNM2 gene could be implicated in the pathogenesis of schizophrenia through the GM volumetric vulnerability of the orbital regions in the inferior frontal gyri.
Publisher
Springer Science and Business Media LLC
Subject
Behavioral Neuroscience,Biological Psychiatry,Cognitive Neuroscience,General Medicine
Reference49 articles.
1. Sullivan PF, Kendler KS, Neale MC: Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003, 60: 1187-1192. 10.1001/archpsyc.60.12.1187. 2. Sun J, Kuo PH, Riley BP, Kendler KS, Zhao Z: Candidate genes for schizophrenia: a survey of association studies and gene ranking. Am J Med Genet B Neuropsychiatr Genet. 2008, 147B: 1173-1181. 10.1002/ajmg.b.30743. 3. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietilainen OP, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Borglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Bottcher Y, Olesen J, Breuer R, Moller HJ, Giegling I: Common variants conferring risk of schizophrenia. Nature. 2009, 460: 744-747. 4. O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, Nikolov I, Hamshere M, Carroll L, Georgieva L, Dwyer S, Holmans P, Marchini JL, Spencer CC, Howie B, Leung HT, Hartmann AM, Moller HJ, Morris DW, Shi Y, Feng G, Hoffmann P, Propping P, Vasilescu C, Maier W, Rietschel M, Zammit S, Schumacher J, Quinn EM, Schulze TG: Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet. 2008, 40: 1053-1055. 10.1038/ng.201. 5. Rose EJ, Donohoe G: Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia. Schizophr Bull. 2013, 39: 518-526. 10.1093/schbul/sbs056.
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|