Author:
Cao Ai-hua,Yu Lin,Wang Yu-wei,Wang Jun-mei,Yang Le-jin,Lei Ge-fei
Abstract
Abstract
Background
Although deficits of attentional set-shifting have been reported in individuals with attention deficit/hyperactivity disorder (ADHD), it is rarely examined in animal models.
Methods
This study compared spontaneously hypertensive rats (SHRs; a genetic animal model of ADHD) and Wistar-Kyoto (WKY) and Sprague-Dawley (SD) rats (normoactive control strains), on attentional set-shifting task (ASST) performance. Furthermore, the dose-effects of methylphenidate (MPH) on attentional set-shifting of SHR were investigated. In experiment 1, ASST procedures were conducted in SHR, WKY and SD rats of 8 each at the age of 5 weeks. Mean latencies at the initial phase, error types and numbers, and trials to criteria at each stage were recorded. In experiment 2, 24 SHR rats were randomly assigned to 3 groups of 8 each-- MPH-L (lower dose), MPH-H (higher dose), and SHR-vehicle groups. From 3 weeks, they were administered 2.5 mg/kg or 5 mg/kg MPH or saline respectively for 14 consecutive days. All rats were tested in the ASST at the age of 5 weeks.
Results
The SHRs generally exhibited poorer performance on ASST than the control WKY and SD rats. Significant strain effects on mean latency [F (2, 21) = 639.636, p < 0.001] and trials to criterion [F (2, 21) = 114.118, p < 0.001] were observed. The SHRs were found to have more perseverative and regressive errors than the control strains (p < 0.001). After MPH treatment, the two MPH treated groups exhibited significantly longer latency and fewer trials to reach criterion than the SHR-vehicle group and the MPH-L group exhibited fewer trials to reach criterion in more stages compared with the MPH-H group. Significant main effects of treatment [F (2, 21) = 52.174, p < 0.001] and error subtype [F (2, 42) = 221.635, p < 0.01] were found.
Conclusions
The SHR may be impaired in discrimination learning, reversal learning and attentional set-shifting. Our study provides evidence that MPH may improve the SHR's performance on attentional set-shifting and lower dose is more effective than higher dose.
Publisher
Springer Science and Business Media LLC
Subject
Behavioral Neuroscience,Biological Psychiatry,Cognitive Neuroscience,General Medicine
Reference45 articles.
1. Lawrence V, Houghton S, Douglas G, Durkin K, Whiting K, Tannock B: Executive function and ADHD: a comparison of children's performance during neuropsychological testing and real-world activities. J Atten Disord. 2004, 7: 137-149. 10.1177/108705470400700302.
2. Martinussen R, Hayden J, Hogg-Johnson S, Tannock R: A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2005, 44: 377-384. 10.1097/01.chi.0000153228.72591.73.
3. Chamberlain SR, Robbins TW, Winder-Rhodes S, Muller U, Sahakian BJ, Blackwell AD: Translational approaches to frontostriatal dysfunction in attention-deficit/hyperactivity disorder using a computerized neuropsychological battery. Biol Psychiatry. 2010, 69: 1192-1203.
4. Kado Y, Sanada S, Yanaqihara M, Ogino T, Abiru K, Nakano K: Clinical application of the modified wisconsin card sorting test to children with attention deficit/hyperactivity disorder. No To Hattatsu. 2005, 37: 380-385.
5. Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M: Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005, 57: 1239-1247. 10.1016/j.biopsych.2005.02.002.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献