Author:
Russell Vivienne A,Sagvolden Terje,Johansen Espen Borgå
Abstract
Abstract
Although animals cannot be used to study complex human behaviour such as language, they do have similar basic functions. In fact, human disorders that have animal models are better understood than disorders that do not. ADHD is a heterogeneous disorder. The relatively simple nervous systems of rodent models have enabled identification of neurobiological changes that underlie certain aspects of ADHD behaviour. Several animal models of ADHD suggest that the dopaminergic system is functionally impaired. Some animal models have decreased extracellular dopamine concentrations and upregulated postsynaptic dopamine D1 receptors (DRD1) while others have increased extracellular dopamine concentrations. In the latter case, dopamine pathways are suggested to be hyperactive. However, stimulus-evoked release of dopamine is often decreased in these models, which is consistent with impaired dopamine transmission. It is possible that the behavioural characteristics of ADHD result from impaired dopamine modulation of neurotransmission in cortico-striato-thalamo-cortical circuits. There is considerable evidence to suggest that the noradrenergic system is poorly controlled by hypofunctional α2-autoreceptors in some models, giving rise to inappropriately increased release of norepinephrine. Aspects of ADHD behaviour may result from an imbalance between increased noradrenergic and decreased dopaminergic regulation of neural circuits that involve the prefrontal cortex. Animal models of ADHD also suggest that neural circuits may be altered in the brains of children with ADHD. It is therefore of particular importance to study animal models of the disorder and not normal animals. Evidence obtained from animal models suggests that psychostimulants may not be acting on the dopamine transporter to produce the expected increase in extracellular dopamine concentration in ADHD. There is evidence to suggest that psychostimulants may decrease motor activity by increasing serotonin levels. In addition to providing unique insights into the neurobiology of ADHD, animal models are also being used to test new drugs that can be used to alleviate the symptoms of ADHD.
Publisher
Springer Science and Business Media LLC
Subject
Behavioral Neuroscience,Biological Psychiatry,Cognitive Neuroscience,General Medicine
Reference191 articles.
1. Pediatrics AA: Clinical practice guideline: diagnosis and evaluation of the child with attention-deficit/hyperactivity disorder. American Academy of Pediatrics. Pediatrics. 2000, 105: 1158-1170. 10.1542/peds.105.5.1158.
2. Smalley SL: Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am J Hum Genet. 1997, 60: 1276-1282.
3. Association AP: Diagnostic and statistical manual of mental disorders: DSM-IV. 1994, Washington, D.C., Author, 78-85. 4
4. Sagvolden T, Johansen EB, Aase H, Russell VA: A dynamic developmental theory of Attention-Deficit/Hyperactivity Disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005, In press:
5. Abikoff HB, Jensen PS, Arnold LL, Hoza B, Hechtman L, Pollack S, Martin D, Alvir J, March JS, Hinshaw S, Vitiello B, Newcorn J, Greiner A, Cantwell DP, Conners CK, Elliott G, Greenhill LL, Kraemer H, Pelham WEJ, Severe JB, Swanson JM, Wells K, Wigal T: Observed classroom behavior of children with ADHD: relationship to gender and comorbidity. J Abnorm Child Psychol. 2002, 30: 349-359. 10.1023/A:1015713807297.
Cited by
206 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献