Author:
Arnsten Amy FT,Dudley Anne G
Abstract
Abstract
Background
Methylphenidate (MPH) is the classic treatment for Attention Deficit Hyperactivity Disorder (ADHD), yet the mechanisms underlying its therapeutic actions remain unclear. Recent studies have identified an oral, MPH dose regimen which when given to rats produces drug plasma levels similar to those measured in humans. The current study examined the effects of these low, orally-administered doses of MPH in rats performing a delayed alternation task dependent on prefrontal cortex (PFC), a brain region that is dysfunctional in ADHD, and is highly sensitive to levels of catecholamines. The receptor mechanisms underlying the enhancing effects of MPH were explored by challenging the MPH response with the noradrenergic α2 adrenoceptor antagonist, idazoxan, and the dopamine D1 antagonist, SCH23390.
Results
MPH produced an inverted U dose response whereby moderate doses (1.0–2.0 mg/kg, p.o.) significantly improved delayed alternation performance, while higher doses (2.0–3.0 mg/kg, p.o.) produced perseverative errors in many animals. The enhancing effects of MPH were blocked by co-administration of either the α2 adrenoceptor antagonist, idazoxan, or the dopamine D1 antagonist, SCH23390, in doses that had no effect on their own.
Conclusion
The administration of low, oral doses of MPH to rats has effects on PFC cognitive function similar to those seen in humans and patients with ADHD. The rat can thus be used as a model for examination of neural mechanisms underlying the therapeutic effects of MPH on executive functions in humans. The efficacy of idazoxan and SCH23390 in reversing the beneficial effects of MPH indicate that both noradrenergic α2 adrenoceptor and dopamine D1 receptor stimulation contribute to cognitive-enhancing effects of MPH.
Publisher
Springer Science and Business Media LLC
Subject
Behavioral Neuroscience,Biological Psychiatry,Cognitive Neuroscience,General Medicine
Reference67 articles.
1. Arnsten AFT, Castellanos FX: Neurobiology of attention regulation and its disorders. Textbook of Child and Adolescent Psychopharmacology. Edited by: Martin A, Scahill L, Charney D and Leckman J. 2002, NY, Oxford Univ. Press, 99-109.
2. Goldman-Rakic PS: The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Phil Trans R Soc London. 1996, 351: 1445-1453.
3. Robbins TW: Dissociating executive functions of the prefrontal cortex. Phil Trans R Soc London. 1996, 351: 1463-1471.
4. Stuss DT, Knight RT: Principles of Frontal Lobe Function. 2002, New York, Oxford University Press, 616-
5. Barkley RA, Grodzinsky G, DuPaul GJ: Frontal lobe functions in Attention Deficit Disorder with and without Hyperactivity: A review and research report. J Abnormal Child Psych. 1992, 20: 163-188. 10.1007/BF00916547.
Cited by
310 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献