Identification of novel candidate biomarkers and immune infiltration in polycystic ovary syndrome

Author:

Na Zhijing,Guo Wen,Song Jiahui,Feng Di,Fang Yuanyuan,Li Da

Abstract

Abstract Background In this study, we aimed to identify novel biomarkers for polycystic ovary syndrome (PCOS) and analyze their potential roles in immune infiltration during PCOS pathogenesis. Methods Five datasets, namely GSE137684, GSE80432, GSE114419, GSE138518, and GSE155489, were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were selected from the train datasets. The least absolute shrinkage and selection operator logistic regression model and support vector machine-recursive feature elimination algorithm were combined to screen potential biomarkers. The test datasets validated the expression levels of these biomarkers, and the area under the curve (AUC) was calculated to analyze their diagnostic value. Quantitative real-time PCR was conducted to verify biomarkers’ expression in clinical samples. CIBERSORT was used to assess differential immune infiltration, and the correlations of biomarkers with infiltrating immune cells were evaluated. Results Herein, 1265 DEGs were identified between PCOS and control groups. The gene sets related to immune response and adaptive immune response were differentially activated in PCOS. The two diagnostic biomarkers of PCOS identified by us were HD domain containing 3 (HDDC3) and syndecan 2 (SDC2; AUC, 0.918 and 0.816, respectively). The validation of hub biomarkers in clinical samples using RT-qPCR was consistent with bioinformatics results. Immune infiltration analysis indicated that decreased activated mast cells (P = 0.033) and increased eosinophils (P = 0.040) may be a part of the pathogenesis of PCOS. HDDC3 was positively correlated with T regulatory cells (P = 0.0064), activated mast cells (P = 0.014), and monocytes (P = 0.024) but negatively correlated with activated memory CD4 T cells (P = 0.016) in PCOS. In addition, SDC2 was positively correlated with activated mast cells (P = 0.0021), plasma cells (P = 0.0051), and M2 macrophages (P = 0.038) but negatively correlated with eosinophils (P = 0.01) and neutrophils (P = 0.031) in PCOS. Conclusion HDDC3 and SDC2 can serve as candidate biomarkers of PCOS and provide new insights into the molecular mechanisms of immune regulation in PCOS.

Funder

National Natural Science Foundation of China

LiaoNing Revitalization Talents Program

Fok Ying Tung Education Foundation

Outstanding Scientific Fund of Shengjing Hospital

Key Research and Development Program of Liaoning Province

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3