Betacellulin regulates gap junction intercellular communication by inducing the phosphorylation of connexin 43 in human granulosa-lutein cells

Author:

Li Yuxi,Chang Hsun-Ming,Sung Yu-Wen,Zhu Hua,Leung Peter C. K.,Sun Ying-Pu

Abstract

Abstract Background The gap junction protein, connexin 43 (Cx43) is highly expressed in human granulosa-lutein (hGL) cells. The phosphorylation of certain amino acid residues in the Cx43 protein has been shown to be related to a decline in gap junction intercellular communication (GJIC), which subsequently affects oocyte meiotic resumption. As a member of the epidermal growth factor (EGF) family, betacellulin (BTC) mediates luteinizing hormone (LH)-induced oocyte maturation and cumulus cell expansion in mammalian follicles. Whether BTC can regulate Cx43 phosphorylation, which further reduces Cx43-coupled GJIC activity in hGL cells remains to be determined. Methods Immortalized human granulosa cells (SVOG cells) and primary human granulosa-lutein cells obtained from women undergoing in vitro fertilization in an academic research center were used as the study models. The expression levels of Cx43 and phosphorylated Cx43 were examined following cell incubation with BTC at different time points. Several kinase inhibitors (sotrastaurin, AG1478, and U0126) and small interfering RNAs targeting EGF receptor (EGFR) and receptor tyrosine-protein kinase 4 (ErbB4) were used to verify the specificity of the effects and to investigate the molecular mechanisms. Real-time-quantitative PCR and western blot analysis were used to detect the specific mRNA and protein levels, respectively. GJIC between SVOG cells were evaluated using a scrape loading and dye transfer assay. Results were analyzed by one-way analysis of variance. Results The results showed that BTC induced the rapid phosphorylation of Cx43 at serine368 without altering the expression of Cx43 in primary and immortalized hGL cells. Additionally, using a dual inhibition approach (kinase inhibitors and siRNA-based expression knockdown), we demonstrated that this effect was mainly mediated by the EGFR but not the ErbB4 receptor. Furthermore, using a protein kinase C (PKC) kinase assay and a scrape-loading and dye transfer assay, we revealed that PKC signaling is the downstream signaling pathway that mediates the increase in Cx43 phosphorylation and subsequent decrease in GJIC activity in response to BTC treatment in hGL cells. Conclusions BTC promptly induced the phosphorylation of connexin 43 at Ser368, leading to decreased GJIC activity in hGL cells. The BTC-induced cellular activities were most likely driven by the EGFR-mediated PKC-dependent signaling pathway. Our findings shed light on the detailed molecular mechanisms by which BTC regulates the process of oocyte meiotic resumption.

Funder

CIHR Foundation Scheme Grant

The National Key R&D Program of China

The International (Regional) Cooperation and Exchange Projects from the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3