A novel autophagy-related gene signature associated with prognosis and immune microenvironment in ovarian cancer

Author:

Yang Jiani,Wang Chao,Zhang Yue,Cheng Shanshan,Wu Meixuan,Gu Sijia,Xu Shilin,Wu Yongsong,Wang Yu

Abstract

AbstractOvarian cancer (OV), the most fatal gynecological malignance worldwide, has high recurrence rates and poor prognosis. Recently, emerging evidence supports that autophagy, a highly regulated multi-step self-digestive process, plays an essential role in OV progression. Accordingly, we filtered 52 potential autophagy-related genes (ATGs) among the 6197 differentially expressed genes (DEGs) identified in TCGA-OV samples (n = 372) and normal controls (n = 180). Based on the LASSO-Cox analysis, we distinguished a 2-gene prognostic signature, namely FOXO1 and CASP8, with promising prognostic value (p-value < 0.001). Together with corresponding clinical features, we constructed a nomogram model for 1-year, 2-year, and 3-year survival, which was validated in both in training (TCGA-OV,p-value < 0.001) and validation (ICGC-OV, p-value = 0.030) cohorts. Interestingly, we evaluated the immune infiltration landscape through the CIBERSORT algorithm, which indicated the upregulation of 5 immune cells, including CD8 + T cells, Tregs, and Macrophages M2, and high expression of critical immune checkpoints (CTLA4, HAVCR2, PDCD1LG2, and TIGIT) in high-risk group. Stepwise, high-risk group exhibited better sensitivity towards chemotherapies of Bleomycin, Sorafenib, Veliparib, and Vinblastine, though less sensitive to immunotherapy. Especially, based on the IHC of tissue microarrays among 125 patients in our institution, we demonstrated that aberrant upregulation of FOXO1 in OV was related to metastasis and poor prognosis. Moreover, FOXO1 could significantly promote tumor invasiveness, migration, and proliferation in OV cell lines, which was assessed through the Transwell, wound-healing, and CCK-8 assay, respectively. Briefly, the autophagy-related signature was a reliable tool to evaluate immune responses and predict prognosis in the realm of OV precision medicine.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3