Abstract
Abstract
Background
Ovarian cancer is the most fatal gynecologic malignancy worldwide due to its vagueness, delay in diagnosis, recurrence, and drug resistance. Therefore, a new type of ovarian cancer treatment prediction biomarker is urgently needed to supplement existing tools. A total of 230 people participated in this study. Out of this figure, 100 participants were patients who underwent an ovarian tumor operation, another 100 participants were ovarian benign patients, and the remaining 30 participants were healthy women. Cancer (experimental) group were 100 patients who underwent ovarian tumor operation, while the control groups were 130 participants consisting of 100 ovarian benign patients and 30 healthy women. Levels of SAA, carbohydrate antigen-125 (CA-125), and human epididymis protein 4 (HE4) were assessed using standard laboratory protocols. A total of 5 ovarian cancer tissues and paracancerous tissues were collected and then stored at − 80 °C until the qRT-PCR assay was conducted.
Results
The ROC curve of SAA concentration in ovarian cancer was plotted to obtain the area under the curve AUC = 0.889, the cut-off value 17.05 mg/L, the sensitivity 78.4% and specificity 86.5%. Compared with pretreatment, the level of serum SAA decreased significantly after treatment. The results revealed that there was a significant correlation between the level of serum SAA and advanced FIGO stage, histology subtype, lymphatic invasion, and distant metastasis (p = 0.003,0.002,0.000 and 0.001). The quantitative Reverse transcription polymerase chain reaction (qRT-PCR) assay revealed that the Messenger RNA (mRNA) of SAA-1 and SAA-4 was much higher in cancer tissues than in adjacent tissues, and MMPs was up-regulation including MMP-1, MMP-9 and MMP- 12 in OVCAR-3 cell stimulated by SAA. The transwell assay revealed that SAA could promote OVCAR-3 cell migration. Moreover, SAA can regulate EMT markers and promote AKT pathway activation.
Conclusions
In summary, our results demonstrated that SAA may be a potential diagnosis and treatment prediction biomarker. The SAA promotes OVCAR-3 cell migration by regulating MMPs and EMT which may correlate with AKT pathway activation.
Funder
Natural Science Foundation of Tianjin City
National Natural Science Foundation of China
863 plans sub-topics
Publisher
Springer Science and Business Media LLC
Subject
Obstetrics and Gynecology,Oncology
Reference44 articles.
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.
2. Reed N, Millan D, Verheijen R, Castiglione M. Non-epithelial ovarian cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(Suppl 5):v31–6.
3. Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ, Xu X, Hamilton TC. Focus on epithelial ovarian cancer. Cancer Cell. 2004;5:19–24.
4. Narod S. Can advanced-stage ovarian cancer be cured? Nat Rev Clin Oncol. 2016;13:255–61.
5. van Haaften-Day C, Shen Y, Xu F, Yu Y, Berchuck A, Havrilesky LJ, de Bruijn HW, van der Zee AG, Bast RJ, Hacker NF. OVX1, macrophage-colony stimulating factor, and CA-125-II as tumor markers for epithelial ovarian carcinoma: a critical appraisal. Cancer-Am Cancer Soc. 2001;92:2837–44.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献