Construction and validation of a transcription factors-based prognostic signature for ovarian cancer

Author:

Cheng Qingyuan,Li Liman,Yu Mingxia

Abstract

Abstract Background Ovarian cancer (OC) is one of the most common and lethal malignant tumors worldwide and the prognosis of OC remains unsatisfactory. Transcription factors (TFs) are demonstrated to be associated with the clinical outcome of many types of cancers, yet their roles in the prognostic prediction and gene regulatory network in patients with OC need to be further investigated. Methods TFs from GEO datasets were collected and analyzed. Differential expression analysis, WGCNA and Cox-LASSO regression model were used to identify the hub-TFs and a prognostic signature based on these TFs was constructed and validated. Moreover, tumor-infiltrating immune cells were analyzed, and a nomogram containing age, histology, FIGO_stage and TFs-based signature were established. Potential biological functions, pathways and the gene regulatory network of TFs in signature was also explored. Results In this study, 6 TFs significantly associated with the prognosis of OC were identified. These TFs were used to build up a TFs-based signature for predicting the survival of patients with OC. Patients with OC in training and testing datasets were divided into high-risk and low-risk groups, according to the median value of risk scores determined by the signature. The two groups were further used to validate the performance of the signature, and the results showed the TFs-based signature had effective prediction ability. Immune infiltrating analysis was conducted and abundance of B cells naïve, T cells CD4 memory resting, Macrophages M2 and Mast cells activated were significantly higher in high-risk group. A nomogram based on the signature was established and illustrated good predictive efficiencies for 1, 2, and 3-year overall survival. Furthermore, the construction of the TFs-target gene regulatory network revealed the potential mechanisms of TFs in OC. Conclusions To our best knowledge, it is for the first time to develop a prognostic signature based on TFs in OC. The TFs-based signature is proven to be effective in predicting the survival of patients with OC. Our study may facilitate the clinical decision-making for patients with OC and help to elucidate the underlying mechanism of TFs in OC.

Funder

national natural science foundation of china

health commission of hubei province scientific research project

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3