Integrating network pharmacology and experimental verification to explore the pharmacological mechanisms of asparagus against polycystic ovary syndrome

Author:

Xing Jinshan,Luo Xin,Jia Keran,Liu Shuang,Chen Shaokun,Qiao Gan,Zhang Chunxiang,Yi Jingyan

Abstract

AbstractBackgroundPolycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder in women of reproductive age that still lacks effective treatment. Inflammation is one of the important features of PCOS. Asparagus (ASP) has anti-inflammatory, antioxidant, and anti-aging pharmacological effects, and its anti-tumor effects have been demonstrated in a variety of tumors. However, the role and mechanism of ASP in PCOS remain unclear.MethodsThe active components of ASP and the key therapeutic targets for PCOS were obtained by network pharmacology. Molecular docking was used to simulate the binding of PRKCA to the active components of ASP. The effects of ASP on inflammatory and oxidative stress pathways in PCOS, and the regulation of PRKCA were examined by KGN, a human derived granulosa cell line. PCOS mouse model validated the results of in vivo experiments.ResultsNetwork pharmacology identified 9 major active ingredients of ASP with 73 therapeutic targets for PCOS. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment yielded 101 PCOS-related signaling pathways. The hub gene PRKCA was obtained after taking the gene intersection of the top 4 pathways. Molecular docking showed the binding of PRKCA to the 7 active components in ASP. In vitro and in vivo experiments showed that ASP alleviated the course of PCOS through antioxidant, anti-inflammatory effects. ASP can partially restore the low expression of PRKCA in the PCOS models.ConclusionThe therapeutic effect of ASP on PCOS is mainly achieved by targeting PRKCA through the 7 active components of ASP. Mechanistically, ASP alleviated the course of PCOS through antioxidant, anti-inflammatory effects, and PRKCA was its potential target.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3