Pivotal role of High-Mobility Group Box 2 in ovarian folliculogenesis and fertility

Author:

Shirouzu Shinichiro,Sugita Naohiro,Choijookhuu Narantsog,Yamaguma Yu,Takeguchi Kanako,Ishizuka Takumi,Tanaka Mio,Fidya ,Kai Kengo,Chosa Etsuo,Yamashita Yoshihiro,Koshimoto Chihiro,Hishikawa Yoshitaka

Abstract

Abstract Background High-Mobility Group Box 1 (HMGB1) and HMGB2 are chromatin-associated proteins that belong to the HMG protein family, and are involved in the regulation of DNA transcription during cell differentiation, proliferation and regeneration in various tissues. However, the role of HMGB2 in ovarian folliculogenesis is largely unknown. Methods We investigated the functional role of HMGB1 and HMGB2 in ovarian folliculogenesis and fertilization using C57BL/6 wild type (WT) and HMGB2-knockout (KO) mice. Ovarian tissues were obtained from WT and HMGB2-KO mice at postnatal days 0, 3, 7, and 2, 6 months of age, then performed immunohistochemistry, qPCR and Western blotting analyses. Oocyte fertilization capability was examined by natural breeding and in vitro fertilization experiments. Results In HMGB2-KO mice, ovary weight was decreased due to reduced numbers of oocytes and follicles. Natural breeding and in vitro fertilization results indicated that HMGB2-KO mice are subfertile, but not sterile. Immunohistochemistry showed that oocytes expressed HMGB2, but not HMGB1, in neonatal and adult WT ovaries. Interestingly, in HMGB2-KO ovaries, a compensatory increase in HMGB1 was found in oocyte nuclei of neonatal and 2-month-old mice; however, this was lost at 6 months of age. Conclusions The depletion of HMGB2 led to alterations in ovarian morphology and function, suggesting that HMGB2 plays an essential role in ovarian development, folliculogenesis and fertilization.

Funder

Grant for Clinical Research from Miyazaki University Hospital

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3