Predicting CD27 expression and clinical prognosis in serous ovarian cancer using CT-based radiomics

Author:

Zhang Chen,Cui Heng,Li Yi,Chang XiaohongORCID

Abstract

Abstract Background This study aimed to develop and evaluate radiomics models to predict CD27 expression and clinical prognosis before surgery in patients with serous ovarian cancer (SOC). Methods We used transcriptome sequencing data and contrast-enhanced computed tomography images of patients with SOC from The Cancer Genome Atlas (n = 339) and The Cancer Imaging Archive (n = 57) and evaluated the clinical significance and prognostic value of CD27 expression. Radiomics features were selected to create a recursive feature elimination-logistic regression (RFE-LR) model and a least absolute shrinkage and selection operator logistic regression (LASSO-LR) model for CD27 expression prediction. Results CD27 expression was upregulated in tumor samples, and a high expression level was determined to be an independent protective factor for survival. A set of three and six radiomics features were extracted to develop RFE-LR and LASSO-LR radiomics models, respectively. Both models demonstrated good calibration and clinical benefits, as determined by the receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. The LASSO-LR model performed better than the RFE-LR model, owing to the area under the curve (AUC) values of the ROC curves (0.829 vs. 0.736). Furthermore, the AUC value of the radiomics score that predicted the overall survival of patients with SOC diagnosed after 60 months was 0.788 using the LASSO-LR model. Conclusion The radiomics models we developed are promising noninvasive tools for predicting CD27 expression status and SOC prognosis. The LASSO-LR model is highly recommended for evaluating the preoperative risk stratification for SOCs in clinical applications.

Funder

National Key Research and Development Program of China

Beijing Natural Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3