Development and validation of an ultrasound‑based radiomics nomogram to predict lymph node status in patients with high-grade serous ovarian cancer: a retrospective analysis

Author:

Qi Yue,Liu Jinchi,Wang Xinyue,Zhang Yuqing,Li Zhixun,Qi Xinyu,Huang Ying

Abstract

Abstract Background Despite advances in medical imaging technology, the accurate preoperative prediction of lymph node status remains challenging in ovarian cancer. This retrospective study aimed to investigate the feasibility of using ultrasound-based radiomics combined with preoperative clinical characteristics to predict lymph node metastasis (LNM) in patients with high-grade serous ovarian cancer (HGSOC). Results Patients with 401 HGSOC lesions from two institutions were enrolled: institution 1 for the training cohort (n = 322) and institution 2 for the external test cohort (n = 79). Radiomics features were extracted from the three preoperative ultrasound images of each lesion. During feature selection, primary screening was first performed using the sample variance F-value, followed by recursive feature elimination (RFE) to filter out the 12 most significant features for predicting LNM. The radscore derived from these 12 radiomic features and three clinical characteristics were used to construct a combined model and nomogram to predict LNM, and subsequent 10-fold cross-validation was performed. In the test phase, the three models were tested with external test cohort. The radiomics model had an area under the curve (AUC) of 0.899 (95% confidence interval [CI]: 0.864–0.933) in the training cohort and 0.855 (95%CI: 0.774–0.935) in the test cohort. The combined model showed good calibration and discrimination in the training cohort (AUC = 0.930) and test cohort (AUC = 0.881), which were superior to those of the radiomic and clinical models alone. Conclusions The nomogram consisting of the radscore and preoperative clinical characteristics showed good diagnostic performance in predicting LNM in patients with HGSOC. It may be used as a noninvasive method for assessing the lymph node status in these patients.

Funder

345 Talent Project and Liaoning BaiQianWan Talents Program

Liaoning Province "Xingliao Talent Program" Medical Masters Project

Liaoning Provincial Science and Technology Program Combined Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3