Integrated clinical characteristics and omics analysis identifies a ferroptosis and iron-metabolism-related lncRNA signature for predicting prognosis and therapeutic responses in ovarian cancer

Author:

Feng Songwei,Yin Han,Zhang Ke,Shan Mei,Ji Xuan,Luo Shanhui,Shen Yang

Abstract

AbstractBackgroundFerroptosis and iron-metabolism are regulated by Long non-coding RNAs (lncRNAs) in ovarian cancer (OC). Therefore, a comprehensive analysis of ferroptosis and iron-metabolism related lncRNAs (FIRLs) in OC is crucial for proposing therapeutic strategies and survival prediction.MethodsIn multi-omics data from OC patients, FIRLs were identified by calculating Pearson correlation coefficients with ferroptosis and iron-metabolism related genes (FIRGs). Cox-Lasso regression analysis was performed on the FIRLs to screen further the lncRNAs participating in FIRLs signature. In addition, all patients were divided into two robust risk subtypes using the FIRLs signature. Receiver operator characteristic (ROC) curve, Kaplan–Meier analysis, decision curve analysis (DCA), Cox regression analysis and calibration curve were used to confirm the clinical benefits of FIRLs signature. Meanwhile, two nomograms were constructed to facilitate clinical application. Moreover, the potential biological functions of the signature were investigated by genes function annotation. Finally, immune microenvironment, chemotherapeutic sensitivity, and the response of PARP inhibitors were compared in different risk groups using diversiform bioinformatics algorithms.ResultsThe raw data were randomized into a training set (n = 264) and a testing set (n = 110). According to Pearson coefficients between FIRGs and lncRNAs, 1075 FIRLs were screened for univariate Cox regression analysis, and then LASSO regression analysis was used to construct 8-FIRLs signature. It is worth mentioning that a variety of analytical methods indicated excellent predictive performance for overall survival (OS) of FIRLs signature (p < 0.05). The multivariate Cox regression analysis showed that FIRLs signature was an independent prognostic factor for OS (p < 0.05). Moreover, significant differences in the abundance of immune cells, immune-related pathways, and drug response were excavated in different risk subtypes (p < 0.05).ConclusionThe FIRLs signature can independently predict overall survival and therapeutic effect in OC patients.

Funder

National Natural Science Foundation of China

iangsu province key research and development project

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3