Author:
Yao Xiaohong,Wang Chaofan,Sun Longjie,Yan Lu,Chen Xuexue,Lv Zheng,Xie Xiaomei,Tian Shuang,liu Wenbo,Li Lei,Zhang Hua,Liu Jiali
Abstract
Abstract
Background
Granulosa cell proliferation and differentiation are essential for follicle development. Breast cancer amplified sequence 2 (BCAS2) is necessary for spermatogenesis, oocyte development, and maintaining the genome integrity of early embryos in mice. However, the function of BCAS2 in granulosa cells is still unknown.
Results
We show that conditional disruption of Bcas2 in granulosa cells caused follicle development failure; the ratio of the positive cells of the cell proliferation markers PCNA and Ki67 were unchanged in granulosa cells. Specific deletion of Bcas2 caused a decrease in the BrdU-positive cell ratio, cell cycle arrest, DNA damage, and an increase in apoptosis in granulosa cells, and RPA1 was abnormally stained in granulosa cells. RNA-seq results revealed that knockout of Bcas2 results in unusual expression of cellular senescence genes. BCAS2 participated in the PRP19 complex to mediate alternative splicing (AS) of E2f3 and Flt3l mRNA to inhibit the cell cycle. Knockout of Bcas2 resulted in a significant decrease in the ratio of BrdU-positive cells in the human granulosa-like tumour (KGN) cell line.
Conclusions
Our results suggest that BCAS2 may influence the proliferation and survival of granulosa cells through regulating pre-mRNA splicing of E2f3 and Flt3l by forming the splicing complex with CDC5L and PRP19.
Funder
the National Key Research & Developmental Program of China
the Natural Science Foundation of Guangdong Province
Publisher
Springer Science and Business Media LLC
Subject
Obstetrics and Gynecology,Oncology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献