A risk model of gene signatures for predicting platinum response and survival in ovarian cancer

Author:

Chen Siyu,Wu Yong,Wang Simin,Wu Jiangchun,Wu Xiaohua,Zheng Zhong

Abstract

Abstract Background Ovarian cancer (OC) is the deadliest tumor in the female reproductive tract. And increased resistance to platinum-based chemotherapy represents the major obstacle in the treatment of OC currently. Robust and accurate gene expression models are crucial tools in distinguishing platinum therapy response and evaluating the prognosis of OC patients. Methods In this study, 230 samples from The Cancer Genome Atlas (TCGA) OV dataset were subjected to mRNA expression profiling, single nucleotide polymorphism (SNP), and copy number variation (CNV) analysis comprehensively to screen out the differentially expressed genes (DEGs). An SVM classifier and a prognostic model were constructed using the Random Forest algorithm and LASSO Cox regression model respectively via R. The Gene Expression Omnibus (GEO) database was applied as the validation set. Results Forty-eight differentially expressed genes (DEGs) were figured out through integrated analysis of gene expression, single nucleotide polymorphism (SNP), and copy number variation (CNV) data. A 10-gene classifier was constructed which could discriminate platinum-sensitive samples precisely with an AUC of 0.971 in the training set and of 0.926 in the GEO dataset (GSE638855). In addition, 8 optimal genes were further selected to construct the prognostic risk model whose predictions were consistent with the actual survival outcomes in the training cohort (p = 9.613e-05) and validated in GSE638855 (p = 0.04862). PNLDC1, SLC5A1, and SYNM were then identified as hub genes that were associated with both platinum response status and prognosis, which was further validated by the Fudan University Shanghai cancer center (FUSCC) cohort. Conclusion These findings reveal a specific risk model that could serve as effective biomarkers to identify patients’ platinum response status and predict survival outcomes for OC patients. PNLDC1, SLC5A1, and SYNM are the hub genes that may serve as potential biomarkers in OC treatment.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3