Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain
-
Published:2021-02-15
Issue:1
Volume:25
Page:
-
ISSN:1364-8535
-
Container-title:Critical Care
-
language:en
-
Short-container-title:Crit Care
Author:
Rodríguez AlejandroORCID, , Ruiz-Botella Manuel, Martín-Loeches Ignacio, Jimenez Herrera María, Solé-Violan Jordi, Gómez Josep, Bodí María, Trefler Sandra, Papiol Elisabeth, Díaz Emili, Suberviola Borja, Vallverdu Montserrat, Mayor-Vázquez Eric, Albaya Moreno Antonio, Canabal Berlanga Alfonso, Sánchez Miguel, del Valle Ortíz María, Ballesteros Juan Carlos, Martín Iglesias Lorena, Marín-Corral Judith, López Ramos Esther, Hidalgo Valverde Virginia, Vidaur Tello Loreto Vidaur, Sancho Chinesta Susana, Gonzáles de Molina Francisco Javier, Herrero García Sandra, Sena Pérez Carmen Carolina, Pozo Laderas Juan Carlos, Rodríguez García Raquel, Estella Angel, Ferrer Ricard
Abstract
Abstract
Background
The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes.
Methods
Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient’s factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves.
Results
The database included a total of 2022 patients (mean age 64 [IQR 5–71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10–17]) and SOFA score (5 [IQR 3–7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (< 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (> 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications.
Conclusion
The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a “one-size-fits-all” model in practice.
Funder
Fundación Privada Barri Casanovas
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine
Reference24 articles.
1. https://coronavirus.jhu.edu/map.html. Accessed 28 November 2020 2. Ferrer R. Pandemia por Covid-19: el mayor reto de la historia del intensivismo. Med Intensiva. 2020. https://doi.org/10.1016/j.medin.2020.04.002 3. Actualización nº 291. Enfermedad por el coronavirus (COVID- 19). Ministerio de Sanidad de España. https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/Actualizacion_291_COVID-19.pdf 4. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8:475–81. https://doi.org/10.1016/S2213-2600(20)30079-5. 5. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, the Northwell COVID-19 Research Consortium, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–9. https://doi.org/10.1001/jama.2020.6775.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|