Physiological effects of awake prone position in acute hypoxemic respiratory failure

Author:

Grieco Domenico Luca,Delle Cese Luca,Menga Luca S.,Rosà Tommaso,Michi Teresa,Lombardi Gianmarco,Cesarano Melania,Giammatteo Valentina,Bello Giuseppe,Carelli Simone,Cutuli Salvatore L.,Sandroni Claudio,De Pascale Gennaro,Pesenti Antonio,Maggiore Salvatore M.,Antonelli Massimo

Abstract

Abstract Background The effects of awake prone position on the breathing pattern of hypoxemic patients need to be better understood. We conducted a crossover trial to assess the physiological effects of awake prone position in patients with acute hypoxemic respiratory failure. Methods Fifteen patients with acute hypoxemic respiratory failure and PaO2/FiO2 < 200 mmHg underwent high-flow nasal oxygen for 1 h in supine position and 2 h in prone position, followed by a final 1-h supine phase. At the end of each study phase, the following parameters were measured: arterial blood gases, inspiratory effort (ΔPES), transpulmonary driving pressure (ΔPL), respiratory rate and esophageal pressure simplified pressure–time product per minute (sPTPES) by esophageal manometry, tidal volume (VT), end-expiratory lung impedance (EELI), lung compliance, airway resistance, time constant, dynamic strain (VT/EELI) and pendelluft extent through electrical impedance tomography. Results Compared to supine position, prone position increased PaO2/FiO2 (median [Interquartile range] 104 mmHg [76–129] vs. 74 [69–93], p < 0.001), reduced respiratory rate (24 breaths/min [22–26] vs. 27 [26–30], p = 0.05) and increased ΔPES (12 cmH2O [11–13] vs. 9 [8–12], p = 0.04) with similar sPTPES (131 [75–154] cmH2O s min−1 vs. 105 [81–129], p > 0.99) and ΔPL (9 [7–11] cmH2O vs. 8 [5–9], p = 0.17). Airway resistance and time constant were higher in prone vs. supine position (9 cmH2O s arbitrary units−3 [4–11] vs. 6 [4–9], p = 0.05; 0.53 s [0.32–61] vs. 0.40 [0.37–0.44], p = 0.03). Prone position increased EELI (3887 arbitrary units [3414–8547] vs. 1456 [959–2420], p = 0.002) and promoted VT distribution towards dorsal lung regions without affecting VT size and lung compliance: this generated lower dynamic strain (0.21 [0.16–0.24] vs. 0.38 [0.30–0.49], p = 0.004). The magnitude of pendelluft phenomenon was not different between study phases (55% [7–57] of VT in prone vs. 31% [14–55] in supine position, p > 0.99). Conclusions Prone position improves oxygenation, increases EELI and promotes VT distribution towards dependent lung regions without affecting VT size, ΔPL, lung compliance and pendelluft magnitude. Prone position reduces respiratory rate and increases ΔPES because of positional increases in airway resistance and prolonged expiratory time. Because high ΔPES is the main mechanistic determinant of self-inflicted lung injury, caution may be needed in using awake prone position in patients exhibiting intense ΔPES. Clinical trail registeration: The study was registered on clinicaltrials.gov (NCT03095300) on March 29, 2017.

Funder

European Society of Intensive Care Medicine

Ministero della Salute

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3