Abstract
Abstract
Background
Venous thromboembolism (VTE) is a severe complication in critically ill patients, often resulting in death and long-term disability and is one of the major contributors to the global burden of disease. This study aimed to construct an interpretable machine learning (ML) model for predicting VTE in critically ill patients based on clinical features and laboratory indicators.
Methods
Data for this study were extracted from the eICU Collaborative Research Database (version 2.0). A stepwise logistic regression model was used to select the predictors that were eventually included in the model. The random forest, extreme gradient boosting (XGBoost) and support vector machine algorithms were used to construct the model using fivefold cross-validation. The area under curve (AUC), accuracy, no information rate, balanced accuracy, kappa, sensitivity, specificity, precision, and F1 score were used to assess the model's performance. In addition, the DALEX package was used to improve the interpretability of the final model.
Results
This study ultimately included 109,044 patients, of which 1647 (1.5%) had VTE during ICU hospitalization. Among the three models, the Random Forest model (AUC: 0.9378; Accuracy: 0.9958; Kappa: 0.8371; Precision: 0.9095; F1 score: 0.8393; Sensitivity: 0.7791; Specificity: 0.9989) performed the best.
Conclusion
ML models can be a reliable tool for predicting VTE in critically ill patients. Among all the models we had constructed, the random forest model was the most effective model that helps the user identify patients at high risk of VTE early so that early intervention can be implemented to reduce the burden of VTE on the patients.
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献