Development and validation of the creatinine clearance predictor machine learning models in critically ill adults

Author:

Huang Chao-Yuan,Güiza Fabian,Wouters Pieter,Mebis Liese,Carra Giorgia,Gunst Jan,Meersseman Philippe,Casaer Michael,Van den Berghe Greet,De Vlieger Greet,Meyfroidt Geert

Abstract

Abstract Background In critically ill patients, measured creatinine clearance (CrCl) is the most reliable method to evaluate glomerular filtration rate in routine clinical practice and may vary subsequently on a day-to-day basis. We developed and externally validated models to predict CrCl one day ahead and compared them with a reference reflecting current clinical practice. Methods A gradient boosting method (GBM) machine-learning algorithm was used to develop the models on data from 2825 patients from the EPaNIC multicenter randomized controlled trial database. We externally validated the models on 9576 patients from the University Hospitals Leuven, included in the M@tric database. Three models were developed: a “Core” model based on demographic, admission diagnosis, and daily laboratory results; a “Core + BGA” model adding blood gas analysis results; and a “Core + BGA + Monitoring” model also including high-resolution monitoring data. Model performance was evaluated against the actual CrCl by mean absolute error (MAE) and root-mean-square error (RMSE). Results All three developed models showed smaller prediction errors than the reference. Assuming the same CrCl of the day of prediction showed 20.6 (95% CI 20.3–20.9) ml/min MAE and 40.1 (95% CI 37.9–42.3) ml/min RMSE in the external validation cohort, while the developed model having the smallest RMSE (the Core + BGA + Monitoring model) had 18.1 (95% CI 17.9–18.3) ml/min MAE and 28.9 (95% CI 28–29.7) ml/min RMSE. Conclusions Prediction models based on routinely collected clinical data in the ICU were able to accurately predict next-day CrCl. These models could be useful for hydrophilic drug dosage adjustment or stratification of patients at risk. Trial registration. Not applicable.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3