Contribution of electrical impedance tomography to personalize positive end-expiratory pressure under ECCO2R

Author:

Pequignot Benjamin,Combes Alain,Lescroart Mickael,Levy Bruno,Koszutski Matthieu

Abstract

AbstractExtracorporeal Carbon Dioxide Removal (ECCO2R) is used in acute respiratory distress syndrome (ARDS) patients to facilitate lung-protective ventilatory strategies. Electrical Impedance Tomography (EIT) allows individual, non-invasive, real-time, bedside, radiation-free imaging of the lungs, providing global and regional dynamic lung analyses. To provide new insights for future ECCO2R research in ARDS, we propose a potential application of EIT to personalize End-Expiratory Pressure (PEEP) following each reduction in tidal volume (VT), as demonstrated in an illustrative case. A 72-year-old male with COVID-19 was admitted to the ICU for moderate ARDS. Monitoring with EIT was started to determine the optimal PEEP value (PEEPEIT), defined as the intersection of the collapse and overdistention curves, after each reduction in VT during ECCO2R. The identified PEEPEIT values were notably low (< 10 cmH2O). The decrease in VT associated with PEEPEIT levels resulted in improved lung compliance, reduced driving pressure and a more uniform ventilation pattern. Despite current Randomized Controlled Trials showing that ultra-protective ventilation with ECCO2R does not improve survival, the applicability of universal ultra-protective ventilation settings for all patients remains a subject of debate. Inappropriately set PEEP levels can lead to alveolar collapse or overdistension, potentially negating the benefits of VT reduction. EIT facilitates real-time monitoring of derecruitment associated with VT reduction, guiding physicians in determining the optimal PEEP value after each decrease in tidal volume. This original description of using EIT under ECCO2R to adjust PEEP at a level compromising between recruitability and overdistention could be a crucial element for future research on ECCO2R.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3