Adaptive mechanical ventilation with automated minimization of mechanical power—a pilot randomized cross-over study

Author:

Becher TobiasORCID,Adelmeier Anna,Frerichs Inéz,Weiler Norbert,Schädler Dirk

Abstract

Abstract Background Adaptive mechanical ventilation automatically adjusts respiratory rate (RR) and tidal volume (VT) to deliver the clinically desired minute ventilation, selecting RR and VT based on Otis’ equation on least work of breathing. However, the resulting VT may be relatively high, especially in patients with more compliant lungs. Therefore, a new mode of adaptive ventilation (adaptive ventilation mode 2, AVM2) was developed which automatically minimizes inspiratory power with the aim of ensuring lung-protective combinations of VT and RR. The aim of this study was to investigate whether AVM2 reduces VT, mechanical power, and driving pressure (ΔPstat) and provides similar gas exchange when compared to adaptive mechanical ventilation based on Otis’ equation. Methods A prospective randomized cross-over study was performed in 20 critically ill patients on controlled mechanical ventilation, including 10 patients with acute respiratory distress syndrome (ARDS). Each patient underwent 1 h of mechanical ventilation with AVM2 and 1 h of adaptive mechanical ventilation according to Otis’ equation (adaptive ventilation mode, AVM). At the end of each phase, we collected data on VT, mechanical power, ΔP, PaO2/FiO2 ratio, PaCO2, pH, and hemodynamics. Results Comparing adaptive mechanical ventilation with AVM2 to the approach based on Otis’ equation (AVM), we found a significant reduction in VT both in the whole study population (7.2 ± 0.9 vs. 8.2 ± 0.6 ml/kg, p <  0.0001) and in the subgroup of patients with ARDS (6.6 ± 0.8 ml/kg with AVM2 vs. 7.9 ± 0.5 ml/kg with AVM, p <  0.0001). Similar reductions were observed for ΔPstat (whole study population: 11.5 ± 1.6 cmH2O with AVM2 vs. 12.6 ± 2.5 cmH2O with AVM, p <  0.0001; patients with ARDS: 11.8 ± 1.7 cmH2O with AVM2 and 13.3 ± 2.7 cmH2O with AVM, p = 0.0044) and total mechanical power (16.8 ± 3.9 J/min with AVM2 vs. 18.6 ± 4.6 J/min with AVM, p = 0.0024; ARDS: 15.6 ± 3.2 J/min with AVM2 vs. 17.5 ± 4.1 J/min with AVM, p = 0.0023). There was a small decrease in PaO2/FiO2 (270 ± 98 vs. 291 ± 102 mmHg with AVM, p = 0.03; ARDS: 194 ± 55 vs. 218 ± 61 with AVM, p = 0.008) and no differences in PaCO2, pH, and hemodynamics. Conclusions Adaptive mechanical ventilation with automated minimization of inspiratory power may lead to more lung-protective ventilator settings when compared with adaptive mechanical ventilation according to Otis’ equation. Trial registration The study was registered at the German Clinical Trials Register (DRKS00013540) on December 1, 2017, before including the first patient.

Funder

imtmedical AG, Buchs, Switzerland

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3