Abstract
AbstractBackgroundFibrinogen is the first coagulation protein to reach critical levels during traumatic haemorrhage. This laboratory study compares paired plasma samples pre- and post-fibrinogen replacement from the Fibrinogen Early In Severe Trauma studY (FEISTY; NCT02745041). FEISTY is the first randomised controlled trial to compare the time to administration of cryoprecipitate (cryo) and fibrinogen concentrate (Fg-C; Riastap) in trauma patients. This study will determine differences in clot strength and fibrinolytic stability within individuals and between treatment arms.MethodsClot lysis, plasmin generation, atomic force microscopy and confocal microscopy were utilised to investigate clot strength and structure in FEISTY patient plasma.ResultsFibrinogen concentration was significantly increased post-transfusion in both groups. The rate of plasmin generation was reduced 1.5-fold post-transfusion of cryo but remained unchanged with Fg-C transfusion. Plasminogen activator inhibitor 1 activity and antigen levels and Factor XIII antigen were increased post-treatment with cryo, but not Fg-C. Confocal microscopy analysis of fibrin clots revealed that cryo transfusion restored fibrin structure similar to those observed in control clots. In contrast, clots remained porous with stunted fibres after infusion with Fg-C. Cryo but not Fg-C treatment increased individual fibre toughness and stiffness.ConclusionsIn summary, our data indicate that cryo transfusion restores key fibrinolytic regulators and limits plasmin generation to form stronger clots in an ex vivo laboratory study. This is the first study to investigate differences in clot stability and structure between cryo and Fg-C and demonstrates that the additional factors in cryo allow formation of a stronger and more stable clot.
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine
Reference60 articles.
1. World Health Organization. Global health estimates 2016: deaths by cause, age, sex, by country and by region, 2000–2016. Geneva: World Health Organization. 2018.
2. Norton R, Kobusingye O. Injuries. N Engl J Med. 2013;368(18):1723–30.
3. Sobrino J, Shafi S. Timing and causes of death after injuries. Proc (Bayl Univ Med Cent). 2013;26(2):120–3.
4. Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, et al. Epidemiology of trauma deaths: a reassessment. J Trauma. 1995;38(2):185–93.
5. Kahl JE, Calvo RY, Sise MJ, Sise CB, Thorndike JF, Shackford SR. The changing nature of death on the trauma service. J Trauma Acute Care Surg. 2013;75(2):195–201.