Capnodynamic monitoring of lung volume and blood flow in response to increased positive end-expiratory pressure in moderate to severe COVID-19 pneumonia: an observational study

Author:

Schulz Luis,Stewart Antony,O’Regan William,McCanny Peter,Austin Danielle,Hallback Magnus,Wallin Mats,Aneman Anders

Abstract

Abstract Background The optimal level of positive end-expiratory pressure (PEEP) during mechanical ventilation for COVID-19 pneumonia remains debated and should ideally be guided by responses in both lung volume and perfusion. Capnodynamic monitoring allows both end-expiratory lung volume ($${\text{EELV}}_{{{\text{CO}}_{2} }}$$ EELV CO 2 ) and effective pulmonary blood flow (EPBF) to be determined at the bedside with ongoing ventilation. Methods Patients with COVID-19-related moderate to severe respiratory failure underwent capnodynamic monitoring of $${\text{EELV}}_{{{\text{CO}}_{2} }}$$ EELV CO 2 and EPBF during a step increase in PEEP by 50% above the baseline (PEEPlow to PEEPhigh). The primary outcome was a > 20 mm Hg increase in arterial oxygen tension to inspired fraction of oxygen (P/F) ratio to define responders versus non-responders. Secondary outcomes included changes in physiological dead space and correlations with independently determined recruited lung volume and the recruitment-to-inflation ratio at an instantaneous, single breath decrease in PEEP. Mixed factor ANOVA for group mean differences and correlations by Pearson’s correlation coefficient are reported including their 95% confidence intervals. Results Of 27 patients studied, 15 responders increased the P/F ratio by 55 [24–86] mm Hg compared to 12 non-responders (p < 0.01) as PEEPlow (11 ± 2.7 cm H2O) was increased to PEEPhigh (18 ± 3.0 cm H2O). The $${\text{EELV}}_{{{\text{CO}}_{2} }}$$ EELV CO 2 was 461 [82–839] ml less in responders at PEEPlow (p = 0.02) but not statistically different between groups at PEEPhigh. Responders increased both $${\text{EELV}}_{{{\text{CO}}_{2} }}$$ EELV CO 2 and EPBF at PEEPhigh (r = 0.56 [0.18–0.83], p = 0.03). In contrast, non-responders demonstrated a negative correlation (r = − 0.65 [− 0.12 to − 0.89], p = 0.02) with increased lung volume associated with decreased pulmonary perfusion. Decreased (− 0.06 [− 0.02 to − 0.09] %, p < 0.01) dead space was observed in responders. The change in $${\text{EELV}}_{{{\text{CO}}_{2} }}$$ EELV CO 2 correlated with both the recruited lung volume (r = 0.85 [0.69–0.93], p < 0.01) and the recruitment-to-inflation ratio (r = 0.87 [0.74–0.94], p < 0.01). Conclusions In mechanically ventilated patients with moderate to severe COVID-19 respiratory failure, improved oxygenation in response to increased PEEP was associated with increased end-expiratory lung volume and pulmonary perfusion. The change in end-expiratory lung volume was positively correlated with the lung volume recruited and the recruitment-to-inflation ratio. This study demonstrates the feasibility of capnodynamic monitoring to assess physiological responses to PEEP at the bedside to facilitate an individualised setting of PEEP. Trial registration: NCT05082168 (18th October 2021).

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3