Author:
Cotoia A.,Paradiso R.,Ferrara G.,Borriello G.,Santoro F.,Spina I.,Mirabella L.,Mariano K.,Fusco G.,Cinnella G.,Singer P.
Abstract
Abstract
Background
Specialized diets enriched with immune nutrients could be an important supplement in patients (pts) with acute traumatic brain injury (TBI). Omega-3 and arginine may interact with immune response and microbiota. No data are available about the role of the specialized diets in modulating the lung microbiota, and little is known about the influence of lung microbiota structure in development of ventilator-associated pneumonia (VAP) in TBI pts. The aims of this study are to evaluate the impact of specific nutrients on the lung microbiota and the variation of lung microbiota in TBI pts developing VAP.
Methods
A cohort of 31 TBI pts requiring mechanical ventilation in ICU was randomized for treatment with specialized (16pts) or standard nutrition (15pts). Alpha and beta diversity of lung microbiota were analyzed from bronco Alveolar Lavage (BAL) samples collected at admission and 7 days post-ICU admission in both groups. A further analysis was carried out on the same samples retrospectively grouped in VAP or no VAP pts.
Results
None developed VAP in the first week. Thereafter, ten out of thirty-one pts developed VAP. The BAL microbiota on VAP group showed significant differences in beta diversity and Staphylococcus and Acinetobacter Genera were high. The specialized nutrition had influence on beta diversity that reached statistical significance only in Bray–Curtis distance.
Conclusion
Our data suggest that TBI patients who developed VAP during ICU stay have different structures of BAL microbiota either at admission and at 7 days post-ICU admission, while no correlation has been observed between different enteral formulas and microbiota composition in terms of richness and evenness. These findings suggest that targeting the lung microbiota may be a promising approach for preventing infections in critically ill patients.
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine
Reference37 articles.
1. Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48–79.
2. McCarthy MS, Martindale RG. Immunonutrition in critical illness: what is the role? Nutr Clin Pract. 2018;33(3):348–58.
3. Cotoia A, Cantatore LP, Beck R, Tullo L, Fortarezza D, Marchese F, et al. Immunological effects of glutamine supplementation in polytrauma patients in intensive care unit. J Anesthesia, Analg Crit Care. 2022;2(1):1–8. https://doi.org/10.1186/s44158-022-00068-1.
4. Lopez-Delgado JC, Grau-Carmona T, Trujillano-Cabello J, García-Fuentes C, Mor-Marco E, Bordeje-Laguna ML, et al. The effect of enteral immunonutrition in the intensive care unit: does it impact on outcomes? Nutrients. 2022;14(9):1904.
5. Kaliannan K, Wang B, Li XY, Kim KJ, Kang JX. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep. 2015;11:5.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献