Surface EMG-based quantification of inspiratory effort: a quantitative comparison with Pes

Author:

Graßhoff JanORCID,Petersen Eike,Farquharson Franziska,Kustermann Max,Kabitz Hans-Joachim,Rostalski Philipp,Walterspacher Stephan

Abstract

Abstract Background Inspiratory patient effort under assisted mechanical ventilation is an important quantity for assessing patient–ventilator interaction and recognizing over and under assistance. An established clinical standard is respiratory muscle pressure $$\textit{P}_{\mathrm{mus}}$$ P mus , derived from esophageal pressure ($$\textit{P}_{\mathrm{es}}$$ P es ), which requires the correct placement and calibration of an esophageal balloon catheter. Surface electromyography (sEMG) of the respiratory muscles represents a promising and straightforward alternative technique, enabling non-invasive monitoring of patient activity. Methods A prospective observational study was conducted with patients under assisted mechanical ventilation, who were scheduled for elective bronchoscopy. Airway flow and pressure, esophageal/gastric pressures and sEMG of the diaphragm and intercostal muscles were recorded at four levels of pressure support ventilation. Patient efforts were quantified via the $$\textit{P}_{\mathrm{mus}}$$ P mus -time product ($${\mathrm{PTP}}_{\mathrm{mus}}$$ PTP mus ), the transdiaphragmatic pressure-time product ($${\mathrm{PTP}}_{\mathrm{di}}$$ PTP di ) and the EMG-time products (ETP) of the two sEMG channels. To improve the signal-to-noise ratio, a method for automatically selecting the more informative of the sEMG channels was investigated. Correlation between ETP and $${\mathrm{PTP}}_{\mathrm{mus}}$$ PTP mus was assessed by determining a neuromechanical conversion factor $$\textit{K}_{\mathrm{EMG}}$$ K EMG between the two quantities. Moreover, it was investigated whether this scalar can be reliably determined from airway pressure during occlusion maneuvers, thus allowing to quantify inspiratory effort based solely on sEMG measurements. Results In total, 62 patients with heterogeneous pulmonary diseases were enrolled in the study, 43 of which were included in the data analysis. The ETP of the two sEMG channels was well correlated with $${\mathrm{PTP}}_{\mathrm{mus}}$$ PTP mus ($$\textit{r}={0.79\pm 0.25}$$ r = 0.79 ± 0.25 and $$\textit{r}={0.84\pm 0.16}$$ r = 0.84 ± 0.16 for diaphragm and intercostal recordings, respectively). The proposed automatic channel selection method improved correlation with $${\mathrm{PTP}}_{\mathrm{mus}}$$ PTP mus ($$\textit{r}={0.87\pm 0.09}$$ r = 0.87 ± 0.09 ). The neuromechanical conversion factor obtained by fitting ETP to $${\mathrm{PTP}}_{\mathrm{mus}}$$ PTP mus varied widely between patients ($$\textit{K}_{\mathrm{EMG}}= {4.32\pm 3.73}\,{\hbox {cm}\hbox {H}_{2}\hbox {O}/\upmu \hbox {V}}$$ K EMG = 4.32 ± 3.73 cm 2 O / μ V ) and was highly correlated with the scalar determined during occlusions ($$\textit{r}={0.95}$$ r = 0.95 , $$\textit{p}<{.001}$$ p < . 001 ). The occlusion-based method for deriving $${\mathrm{PTP}}_{\mathrm{mus}}$$ PTP mus from ETP showed a breath-wise deviation to $${\mathrm{PTP}}_{\mathrm{mus}}$$ PTP mus of $${0.43\pm 1.73}\,{\hbox {cm}\hbox {H}_{2}\hbox {O}\,\hbox {s}}$$ 0.43 ± 1.73 cm 2 O s across all datasets. Conclusion These results support the use of surface electromyography as a non-invasive alternative for monitoring breath-by-breath inspiratory effort of patients under assisted mechanical ventilation.

Funder

Drägerwerk AG & Co. KGaA

Universität zu Lübeck

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3