Author:
Wiersema Renske,Jukarainen Sakari,Vaara Suvi T.,Poukkanen Meri,Lakkisto Päivi,Wong Hector,Linder Adam,van der Horst Iwan C. C.,Pettilä Ville
Abstract
Abstract
Background
The pathophysiology of septic acute kidney injury is inadequately understood. Recently, subphenotypes for sepsis and AKI have been derived. The objective of this study was to assess whether a combination of comorbidities, baseline clinical data, and biomarkers could classify meaningful subphenotypes in septic AKI with different outcomes.
Methods
We performed a post hoc analysis of the prospective Finnish Acute Kidney Injury (FINNAKI) study cohort. We included patients admitted with sepsis and acute kidney injury during the first 48 h from admission to intensive care (according to Kidney Disease Improving Global Outcome criteria). Primary outcomes were 90-day mortality and renal recovery on day 5. We performed latent class analysis using 30 variables obtained on admission to classify subphenotypes. Second, we used logistic regression to assess the association of derived subphenotypes with 90-day mortality and renal recovery on day 5.
Results
In total, 301 patients with septic acute kidney injury were included. Based on the latent class analysis, a two-class model was chosen. Subphenotype 1 was assigned to 133 patients (44%) and subphenotype 2 to 168 patients (56%). Increased levels of inflammatory and endothelial injury markers characterized subphenotype 2. At 90 days, 29% of patients in subphenotype 1 and 41% of patients in subphenotype 2 had died. Subphenotype 2 was associated with a lower probability of short-term renal recovery and increased 90-day mortality.
Conclusions
In this post hoc analysis, we identified two subphenotypes of septic acute kidney injury with different clinical outcomes. Future studies are warranted to validate the suggested subphenotypes of septic acute kidney injury.
Funder
Helsingin Yliopisto
Sigrid Juséliuksen Säätiö
Academy of Finland
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine
Reference45 articles.
1. Pickkers P, Ostermann M, Joannidis M, Zarbock A, Hoste E, Bellomo R, et al. The intensive care medicine agenda on acute kidney injury. Intensive Care Med. Department of Intensive Care Medicine (710), Radboud University Medical Centre, Geert Grooteplein Zuid 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.; Department of Critical Care, Guy’s and St Thomas’ Hospital, King’s College London, Lon (TRUNCATED; 2017;.
2. Nisula S, Kaukonen K-M, Vaara ST, Korhonen A-M, Poukkanen M, Karlsson S, et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. 2013;39:420–8 Available from: https://doi.org/10.1007/s00134-012-2796-5.
3. Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. England: Nature Publishing Group; 2018 [cited 2018 Sep 4];14. Available from: http://www.nature.com/articles/s41581-018-0052-0.
4. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16:3365–70.
5. Mildh H, Pettila V, Korhonen AM, Karlsson S, Ala-Kokko T, Reinikainen M, et al. Three-year mortality in 30-day survivors of critical care with acute kidney injury: data from the prospective observational FINNAKI study. Ann Intensive Care. 2016;6:118.
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献