Flow starvation during square-flow assisted ventilation detected by supervised deep learning techniques

Author:

de Haro Candelaria,Santos-Pulpón Verónica,Telías Irene,Xifra-Porxas Alba,Subirà Carles,Batlle Montserrat,Fernández Rafael,Murias Gastón,Albaiceta Guillermo M.,Fernández-Gonzalo Sol,Godoy-González Marta,Gomà Gemma,Nogales Sara,Roca Oriol,Pham Tai,López-Aguilar Josefina,Magrans Rudys,Brochard Laurent,Blanch Lluís,Sarlabous Leonardo, ,Brochard Laurent,Telias Irene,Damiani Felipe,Artigas Ricard,Santis Cesar,Pham Tài,Mauri Tommaso,Spinelli Elena,Grasselli Giacomo,Spadaro Savino,Volta Carlo Alberto,Mojoli Francesco,Georgopoulos Dimitris,Kondili Eumorfia,Soundoulounaki Stella,Becher Tobias,Weiler Norbert,Schaedler Dirk,Roca Oriol,Santafe Manel,Mancebo Jordi,Rodríguez Nuria,Heunks Leo,de Vries Heder,Chen Chang-Wen,Zhou Jian-Xin,Chen Guang-Qiang,Rit-tayamai Nuttapol,Tiribelli Norberto,Fredes Sebastian,Artigas Ricard Mellado,Ortolá Carlos Ferrando,Beloncle François,Mercat Alain,Arnal Jean-Michel,Diehl Jean-Luc,Demoule Alexandre,Dres Martin,Fossé Quentin,Jochmans Sébastien,Chelly Jonathan,Terzi Nicolas,Guérin Claude,Kassis E. Baedorf,Beitler Jeremy,Chiumello Davide,Bol-giaghi Erica Ferrari Luca,Thille Arnaud W.,Coudroy Rémi,Papazian Laurent

Abstract

Abstract Background Flow starvation is a type of patient-ventilator asynchrony that occurs when gas delivery does not fully meet the patients’ ventilatory demand due to an insufficient airflow and/or a high inspiratory effort, and it is usually identified by visual inspection of airway pressure waveform. Clinical diagnosis is cumbersome and prone to underdiagnosis, being an opportunity for artificial intelligence. Our objective is to develop a supervised artificial intelligence algorithm for identifying airway pressure deformation during square-flow assisted ventilation and patient-triggered breaths. Methods Multicenter, observational study. Adult critically ill patients under mechanical ventilation > 24 h on square-flow assisted ventilation were included. As the reference, 5 intensive care experts classified airway pressure deformation severity. Convolutional neural network and recurrent neural network models were trained and evaluated using accuracy, precision, recall and F1 score. In a subgroup of patients with esophageal pressure measurement (ΔPes), we analyzed the association between the intensity of the inspiratory effort and the airway pressure deformation. Results 6428 breaths from 28 patients were analyzed, 42% were classified as having normal-mild, 23% moderate, and 34% severe airway pressure deformation. The accuracy of recurrent neural network algorithm and convolutional neural network were 87.9% [87.6–88.3], and 86.8% [86.6–87.4], respectively. Double triggering appeared in 8.8% of breaths, always in the presence of severe airway pressure deformation. The subgroup analysis demonstrated that 74.4% of breaths classified as severe airway pressure deformation had a ΔPes > 10 cmH2O and 37.2% a ΔPes > 15 cmH2O. Conclusions Recurrent neural network model appears excellent to identify airway pressure deformation due to flow starvation. It could be used as a real-time, 24-h bedside monitoring tool to minimize unrecognized periods of inappropriate patient-ventilator interaction.

Funder

Instituto de Salud Carlos III

Consorcio Centro de Investigación Biomédica en RED

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3