Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy

Author:

De Temmerman Pieter-Jan,Van Doren Elke,Verleysen Eveline,Van der Stede Yves,Francisco Michel Abi Daoud,Mast Jan

Abstract

Abstract Background The interaction of a nanomaterial (NM) with a biological system depends not only on the size of its primary particles but also on the size, shape and surface topology of its aggregates and agglomerates. A method based on transmission electron microscopy (TEM), to visualize the NM and on image analysis, to measure detected features quantitatively, was assessed for its capacity to characterize the aggregates and agglomerates of precipitated and pyrogenic synthetic amorphous silicon dioxide (SAS), or silica, NM. Results Bright field (BF) TEM combined with systematic random imaging and semi-automatic image analysis allows measuring the properties of SAS NM quantitatively. Automation allows measuring multiple and arithmetically complex parameters simultaneously on high numbers of detected particles. This reduces operator-induced bias and assures a statistically relevant number of measurements, avoiding the tedious repetitive task of manual measurements. Access to multiple parameters further allows selecting the optimal parameter in function of a specific purpose. Using principle component analysis (PCA), twenty-three measured parameters were classified into three classes containing measures for size, shape and surface topology of the NM. Conclusion The presented method allows a detailed quantitative characterization of NM, like dispersions of precipitated and pyrogenic SAS based on the number-based distributions of their mean diameter, sphericity and shape factor.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Reference54 articles.

1. EC: Commission recommendation on the definition of the term "nanomaterial". Commission recommendation. 2010, European Commission, Brussels

2. EC: Commission recommendation on the definition of nanomaterial. Commission recommendation. 2011, European Commission, Brussels

3. SCENIHR: Scientific basis for the definition of the term “Nanomaterial”. 2010, Scientific Committee on Emerging and Newly Identified Health Risks,

4. SCENIHR: Opinion on the scientific aspects of the existing and proposed definitions relating to products of nanoscience and nanotechnologies. scenihr_o_012. 2007, Scientific Committee on Emerging and Newly Identified Health Risks, Brussels

5. ISO: Cleanrooms and associated controlled environments - Part 6: Vocabulary. ISO 14644–6:2007. 2007, International Organization for Standardization, Geneva

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3