Author:
Vidyala Sri D,Asghar Waseem,Iqbal Samir M
Abstract
Abstract
Background
Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures.
Results
The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films.
Conclusion
The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices.
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Reference30 articles.
1. Kricka LJ: Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century. Clinica Chimica Acta. 2001, 307: 219-223. 10.1016/S0009-8981(01)00451-X.
2. Yaling L, Samir MI: Silicon-Based Novel Bio-sensing Platforms at the Micro and Nano Scale. ECS Transactions. 2009, 16: 25-45.
3. Anton D: Surface-fluorinated coatings. Advanced Materials. 1998, 10: 1197-1205. 10.1002/(SICI)1521-4095(199810)10:15<1197::AID-ADMA1197>3.0.CO;2-F.
4. Stanishevsky A, Catledge SA, Vohra Y: Surface modification and functionalization of nanostructured carbons. Journal of Achievements in Materials and Manufacturing Engineering. 2009, 37: 348-353.
5. Ratner BD: Surface modification of polymers: chemical, biological and surface analytical challenges. Biosensors and Bioelectronics. 1995, 10: 797-804. 10.1016/0956-5663(95)99218-A.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献