Porphyrin-magnetite nanoconjugates for biological imaging

Author:

Nowostawska Małgorzata,Corr Serena A,Byrne Stephen J,Conroy Jennifer,Volkov Yuri,Gun'ko Yurii K

Abstract

Abstract Background The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report the preparation, characterisation and potential application of new "two-in-one" magnetic fluorescent nanocomposites composed of silica-coated magnetite nanoparticles covalently linked to a porphyrin moiety. Method The experiments were performed by administering porphyrin functionalised silica-coated magnetite nanoparticles to THP-1 cells, a human acute monocytic leukaemia cell line. Cells were cultured in RPMI 1640 medium with 25 mM HEPES supplemented with heat-inactivated foetal bovine serum (FBS). Results We have synthesised, characterised and analysed in vitro, a new multimodal (magnetic and fluorescent) porphyrin magnetic nanoparticle composite (PMNC). Initial co-incubation experiments performed with THP-1 macrophage cells were promising; however the PMNC photobleached under confocal microscopy study. β-mercaptoethanol (β-ME) was employed to counteract this problem and resulted not only in enhanced fluorescence emission, but also allowed for elongated imaging and increased exposure times of the PMNC in a cellular environment. Conclusion Our experiments have demonstrated that β-ME visibly enhances the emission intensity. No deleterious effects to the cells were witnessed upon co-incubation with β-ME alone and no increases in background fluorescence were recorded. These results should present an interest for further development of in vitro biological imaging techniques.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Reference31 articles.

1. Pankhurst QA, Connolly J, Jones SK, Dobson J: Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics. 2003, R167-10.1088/0022-3727/36/13/201.

2. Bergemann C, Muller-Schulte D, Oster J, a Brassard L, Lubbe AS: Magnetic ion-exchange nano- and microparticles for medical, biochemical and molecular biological applications. J Magn Magn Mater. 1999, 194: 45-52. 10.1016/S0304-8853(98)00554-X.

3. Byrne SJ, Corr SA, Gun'ko YK, Kelly JM, Brougham DF, Ghosh S: Magnetic nanoparticle assemblies on denatured DNA show unusual magnetic relaxivity and potential applications for MRI. Chemical Communications. 2004, 2560-2561. 10.1039/b409603g.

4. Wan J, Cai W, Meng X, Liu E: Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chemical Communications. 2007, 5004-5006. 10.1039/b712795b.

5. Corr SA, Byrne SJ, Tekoriute R, Meledandri CJ, Brougham DF, Lynch M, Kerskens C, O'Dwyer L, Gun'ko YK: Linear Assemblies of Magnetic Nanoparticles as MRI Contrast Agents. Journal of the American Chemical Society. 2008, 130: 4214-4215. 10.1021/ja710172z.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3