Evaluation of triblock copolymeric micelles of δ- valerolactone and poly (ethylene glycol) as a competent vector for doxorubicin delivery against cancer

Author:

Nair K Lekha,Jagadeeshan Sankar,Nair S Asha,Kumar G S Vinod

Abstract

Abstract Background Specific properties of amphiphilic copolymeric micelles like small size, stability, biodegradability and prolonged biodistribution have projected them as promising vectors for drug delivery. To evaluate the potential of δ-valerolactone based micelles as carriers for drug delivery, a novel triblock amphiphilic copolymer poly(δ-valerolactone)/poly(ethylene glycol)/poly(δ-valerolactone) (VEV) was synthesized and characterized using IR, NMR, GPC, DTA and TGA. To evaluate VEV as a carrier for drug delivery, doxorubicin (DOX) entrapped VEV micelles (VEVDMs) were prepared and analyzed for in vitro antitumor activity. Results VEV copolymer was successfully synthesized by ring opening polymerization and the stable core shell structure of VEV micelles with a low critical micelle concentration was confirmed by proton NMR and fluorescence based method. Doxorubicin entrapped micelles (VEVDMs) prepared using a modified single emulsion method were obtained with a mean diameter of 90 nm and high encapsulation efficiency showing a pH dependent sustained doxorubicin release. Biological evaluation in breast adenocarcinoma (MCF7) and glioblastoma (U87MG) cells by flow cytometry showed 2-3 folds increase in cellular uptake of VEVDMs than free DOX. Block copolymer micelles without DOX were non cytotoxic in both the cell lines. As evaluated by the IC50 values VEVDMs induced 77.8, 71.2, 81.2% more cytotoxicity in MCF7 cells and 40.8, 72.6, 76% more cytotoxicity in U87MG cells than pristine DOX after 24, 48, 72 h treatment, respectively. Moreover, VEVDMs induced enhanced apoptosis than free DOX as indicated by higher shift in Annexin V-FITC fluorescence and better intensity of cleaved PARP. Even though, further studies are required to prove the efficacy of this formulation in vivo the comparable G2/M phase arrest induced by VEVDMs at half the concentration of free DOX confirmed the better antitumor efficacy of VEVDMs in vitro. Conclusions Our studies clearly indicate that VEVDMs possess great therapeutic potential for long-term tumor suppression. Furthermore, our results launch VEV as a promising nanocarrier for an effective controlled drug delivery in cancer chemotherapy.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3