Determination of the volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterials

Author:

Van Doren Elke AF,De Temmerman Pieter-Jan RH,Francisco Michel Abi Daoud,Mast Jan

Abstract

Abstract Background Transmission electron microscopy (TEM) remains an important technique to investigate the size, shape and surface characteristics of particles at the nanometer scale. Resulting micrographs are two dimensional projections of objects and their interpretation can be difficult. Recently, electron tomography (ET) is increasingly used to reveal the morphology of nanomaterials (NM) in 3D. In this study, we examined the feasibility to visualize and measure silica and gold NM in suspension using conventional bright field electron tomography. Results The general morphology of gold and silica NM was visualized in 3D by conventional TEM in bright field mode. In orthoslices of the examined NM the surface features of a NM could be seen and measured without interference of higher or lower lying structures inherent to conventional TEM. Segmentation by isosurface rendering allowed visualizing the 3D information of an electron tomographic reconstruction in greater detail than digital slicing. From the 3D reconstructions, the surface area and the volume of the examined NM could be estimated directly and the volume-specific surface area (VSSA) was calculated. The mean VSSA of all examined NM was significantly larger than the threshold of 60 m2/cm3. The high correlation between the measured values of area and volume gold nanoparticles with a known spherical morphology and the areas and volumes calculated from the equivalent circle diameter (ECD) of projected nanoparticles (NP) indicates that the values measured from electron tomographic reconstructions are valid for these gold particles. Conclusion The characterization and definition of the examined gold and silica NM can benefit from application of conventional bright field electron tomography: the NM can be visualized in 3D, while surface features and the VSSA can be measured.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Reference21 articles.

1. SCENIHR: Scientific basis for the definition of the term "Nanomaterial" SCENIHR opinion for public consultation approved by written procedure on 6 July 2010. [http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_030.pdf].

2. European Commission recommendation on the definition of the term "Nanomaterial"(2010). [http://ec.europa.eu/environment/consultations/pdf/recommendation_nano.pdf].

3. Alloyeau D, Ricolleau C, Oikawa T, Langlois C, Le Bouar Y, Loiseau A: Comparing electron tomography and HRTEM slicing methods as tools to measure the thickness of nanoparticles. Ultramicroscopy. 2009, 109 (7): 788-796. 10.1016/j.ultramic.2009.02.002.

4. Midgley PA, Ward EP, Hungría AB, Thomas JM: Nanotomography in the chemical, biological and materials sciences. Chem soc Rev. 2007, 36 (9): 1477-1494. 10.1039/b701569k.

5. Friedrich H, de Jongh PE, Verkleij AJ, de Jong KP: Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem Rev. 2009, 109 (5): 1613-1629. 10.1021/cr800434t.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3