Author:
Arora Upasana,Tyagi Poornima,Swaminathan Sathyamangalam,Khanna Navin
Abstract
Abstract
Background
Dengue is a global public health problem for which no drug or vaccine is available. Currently, there is increasing interest in developing non-replicating dengue vaccines based on a discrete antigenic domain of the major structural protein of dengue viruses (DENVs), known as envelope domain III (EDIII). The use of bio-nanoparticles consisting of recombinant viral structural polypeptides, better known as virus-like particles (VLPs), has emerged as a potential platform technology for vaccine development. This work explores the feasibility of developing nanoparticles based on E. coli- expressed recombinant Hepatitis B virus core antigen (HBcAg) designed to display EDIII moiety of DENV on the surface.
Findings
We designed a synthetic gene construct encoding HBcAg containing an EDIII insert in its c/e1 loop. The fusion antigen HBcAg-EDIII-2 was expressed in E. coli, purified to near homogeneity using Ni+2 affinity chromatography and demonstrated to assemble into discrete 35–40 nm VLPs by electron microscopy. Competitive ELISA analyses showed that the EDIII-2 moieties of the VLPs are accessible to anti-EDIII-2-specific monoclonal and polyclonal antibodies, suggesting that they are surface-displayed. The VLPs were highly immunogenic eliciting high titer anti-EDIII-2 antibodies that were able to recognize, bind and neutralize infectious DENV based on ELISA, immunofluorescence and virus-neutralization assays.
Conclusion
This work demonstrates that HBcAg-derived nanoparticles can serve as a useful platform for the display of DENV EDIII. The EDIII-displaying nanoparticles may have potential applications in diagnostics/vaccines for dengue.
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Reference24 articles.
1. World Health Organization Factsheet No117: Dengue and dengue haemorrhagic fever. 2012, http://www.who.int/mediacentre/factsheets/fs117/en/ [Accessed April 27, 2012]
2. Gubler DJ, Kuno G, Markoff L: Flaviviruses. Fields Virology. Edited by: Knipe DM, Howley PM. 2007, Wolters Kluwer and Lippincott Williams & Wilkins, Philadelphia, 1153-1252. 5
3. Swaminathan S, Batra G, Khanna N: Dengue vaccines: state of the art. Expert Opin Ther Patents. 2010, 20: 819-835. 10.1517/13543771003767476.
4. Schmitz J, Roehrig J, Barrett A, Hombach J: Next generation dengue vaccines: a review of candidates in preclinical development. Vaccine. 2011, 29: 7276-7284. 10.1016/j.vaccine.2011.07.017.
5. Guzman MG, Hermida L, Bernardo L, Ramirez R, Guillén G: Domain III of the envelope protein as a dengue vaccine target. Expert Rev Vaccines. 2010, 9: 137-147. 10.1586/erv.09.139.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献