Light in the box—photobiological examination chamber with light trap ventilation system for studying fungal surface cultures illustrated with Metarhizium brunneum and Beauveria brongniartii

Author:

Vrabl Pamela,Zottele Maria,Colleselli Lucia,Schinagl Christoph Walter,Mayerhofer Laura,Siewert Bianka,Strasser Hermann

Abstract

AbstractDue to their versatile way of life as saprophytes, endophytes, and entomopathogens, fungi of the genera Metarhizium and Beauveria are exposed to varying illumination conditions in their natural habitats, which makes a thorough adaptation to light very likely. While the few available studies for these genera support this assumption, research in this field is still in its infancy and the data material restricted to only a few fungal species. Thus, the aim of this work was to explore how light influences growth, conidial production and secondary metabolite formation of two industrial relevant strains of M. brunneum (MA 43, formerly M. anisopliae var. anisopliae BIPESCO 5/F52) and B. brongniartii (BIPESCO 2). To achieve this, we constructed an easily adjustable illumination device for highly standardized photophysiological studies of fungi on Petri dishes, the so-called LIGHT BOX. With the aid of this device, M. brunneum and B. brongniartii were grown on S4G or S2G agar at 25 °C for 14 days either in complete darkness or under constant illumination with red light (λpeak = 635 nm), green light (λpeak = 519 nm) or blue light (λpeak = 452 nm). In addition, for each wavelength the effect of different illumination intensities was tested, i.e., intensities of red light ranging from 22.1 ± 0.1 to 136.5 ± 0.3 µW cm-2, green light from 16.5 ± 0.1 to 96.2 ± 0.1 µW cm-2, and blue light from 56.1 ± 0.2 to 188.9 ± 0.6 µW cm-2. Both fungi strongly responded in terms of growth, conidial production, pigmentation and morphology to changes in the wavelength and irradiation intensity. The wavelength-dependent production of the well-known secondary metabolite oosporein which is secreted by the genus Beauveria in particular, was also increased under green and blue light exposure. The established LIGHT BOX system allows not only to optimize conidial production yields with these biotechnologically relevant fungi, but also allows the photobiological exploration of other fungi.

Funder

Austrian Science Fund

Universität Innsbruck

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Applied Microbiology and Biotechnology,Ecology, Evolution, Behavior and Systematics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3