Enabling community-based metrology for wood-degrading fungi

Author:

Perez Rolando,Luccioni Marina,Kamakaka Rohinton,Clamons Samuel,Gaut Nathaniel,Stirling Finn,Adamala Katarzyna P.,Silver Pamela A.,Endy Drew

Abstract

Abstract Background Lignocellulosic biomass could support a greatly-expanded bioeconomy. Current strategies for using biomass typically rely on single-cell organisms and extensive ancillary equipment to produce precursors for downstream manufacturing processes. Alternative forms of bioproduction based on solid-state fermentation and wood-degrading fungi could enable more direct means of manufacture. However, basic methods for cultivating wood-degrading fungi are often ad hoc and not readily reproducible. Here, we developed standard reference strains, substrates, measurements, and methods sufficient to begin to enable reliable reuse of mycological materials and products in simple laboratory settings. Results We show that a widely-available and globally-regularized consumer product (Pringles™) can support the growth of wood-degrading fungi, and that growth on Pringles™-broth can be correlated with growth on media made from a fully-traceable and compositionally characterized substrate (National Institute of Standards and Technology Reference Material 8492 Eastern Cottonwood Whole Biomass Feedstock). We also establish a Relative Extension Unit (REU) framework that is designed to reduce variation in quantification of radial growth measurements. So enabled, we demonstrate that five laboratories were able to compare measurements of wood-fungus performance via a simple radial extension growth rate assay, and that our REU-based approach reduced variation in reported measurements by up to ~ 75%. Conclusions Reliable reuse of materials, measures, and methods is necessary to enable distributed bioproduction processes that can be adopted at all scales, from local to industrial. Our community-based measurement methods incentivize practitioners to coordinate the reuse of standard materials, methods, strains, and to share information supporting work with wood-degrading fungi.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Applied Microbiology and Biotechnology,Ecology, Evolution, Behavior and Systematics,Biotechnology

Reference105 articles.

1. Langholtz, B. M. H. J., Stokes, L. M. & Eaton. 2016 Billion-Ton Report Advancing Domestic Resources for a Thriving Bioeconomy. 2016. https://www.energy.gov/sites/prod/files/2016/12/f34/2016_billion_ton_report_12.2.16_0.pdf. Accessed 22 Jan 2020

2. Board, B. The Bioeconomy Initiative: Implementation Framework. 2017. https://biomassboard.gov/pdfs/Bioeconomy_Initiative_Implementation_Framework_FINAL.pdf. Accessed 22 Jan 2020.

3. Carlson R. Estimating the biotech sector’s contribution to the US economy. Nat Biotechnol. 2016;34:247–55.

4. Carlson, R. Bioeconomy Capital: Bioeconomy Dashboard. 2019. https://www.bioeconomycapital.com/bioeconomy-dashboard. Accessed 22 Jan 2020.

5. US Department of Agriculture. US Biobased Products Market Potential and Projections Through 2025, OCE-2008–01. 2008. https://www.usda.gov/oce/reports/energy/BiobasedReport2008.pdf. Accessed 22 Jan 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3