Optimization of scleroglucan production by Sclerotium rolfsii by lowering pH during fermentation via oxalate metabolic pathway manipulation using CRISPR/Cas9

Author:

Bai Tianlong,Wang Teng,Li Yan,Gao Na L.,Zhang Lixin,Chen Wei-Hua,Yin XiushanORCID

Abstract

Abstract Background Sclerotium rolfsii is a potent producer of many secondary metabolites, one of which like scleroglucan is an exopolysaccharide (EPS) appreciated as a multipurpose compound applicable in many industrial fields. Results Aspartate transaminase (AAT1) catalyzes the interconversion of aspartate and α-ketoglutarate to glutamate and oxaloacetate. We selected AAT1 in the oxalate metabolic pathway as a target of CRISPR/Cas9. Disruption of AAT1 leads to the accumulation of oxalate, rather than its conversion to α-ketoglutarate (AKG). Therefore, AAT1-mutant serves to lower the pH (pH 3–4) so as to increase the production of the pH-sensitive metabolite scleroglucan to 21.03 g L−1 with a productivity of up to 0.25 g L−1·h−1. Conclusions We established a platform for gene editing that could rapidly generate and select mutants to provide a new beneficial strain of S. rolfsii as a scleroglucan hyper-producer, which is expected to reduce the cost of controlling the optimum pH condition in the fermentation industry.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Applied Microbiology and Biotechnology,Ecology, Evolution, Behavior and Systematics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3