Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi

Author:

Martín Juan F.

Abstract

AbstractFungal secondary metabolites are synthesized by complex biosynthetic pathways catalized by enzymes located in different subcellular compartments, thus requiring traffic of precursors and intermediates between them. The β-lactam antibiotics penicillin and cephalosporin C serve as an excellent model to understand the molecular mechanisms that control the subcellular localization of secondary metabolites biosynthetic enzymes. Optimal functioning of the β-lactam biosynthetic enzymes relies on a sophisticated temporal and spatial organization of the enzymes, the intermediates and the final products. The first and second enzymes of the penicillin pathway, ACV synthetase and IPN synthase, in Penicillium chrysogenum and Aspergillus nidulans are cytosolic. In contrast, the last two enzymes of the penicillin pathway, phenylacetyl-CoA ligase and isopenicillin N acyltransferase, are located in peroxisomes working as a tandem at their optimal pH that coincides with the peroxisomes pH. Two MFS transporters, PenM and PaaT have been found to be involved in the import of the intermediates isopenicillin N and phenylacetic acid, respectively, into peroxisomes. Similar compartmentalization of intermediates occurs in Acremonium chrysogenum; two enzymes isopenicillin N-CoA ligase and isopenicillin N-CoA epimerase, that catalyse the conversion of isopenicillin N in penicillin N, are located in peroxisomes. Two genes encoding MFS transporters, cefP and cefM, are located in the early cephalosporin gene cluster. These transporters have been localized in peroxisomes by confocal fluorescence microscopy. A third gene of A. chrysogenum, cefT, encodes an MFS protein, located in the cell membrane involved in the secretion of cephalosporin C, although cefT-disrupted mutants are still able to export cephalosporin by redundant transporters. The secretion of penicillin from peroxisomes to the extracellular medium is still unclear. Attempts have been made to identify a gene encoding the penicillin secretion protein among the 48 ABC-transporters of P. chrysogenum. The highly efficient secretion system that exports penicillin against a concentration gradient may involve active penicillin extrusion systems mediated by vesicles that fuse to the cell membrane. However, there is no correlation of pexophagy with penicillin or cephalosporin formation since inactivation of pexophagy leads to increased penicillin or cephalosporin biosynthesis due to preservation of peroxisomes. The penicillin biosynthesis finding shows that in order to increase biosynthesis of novel secondary metabolites it is essential to adequately target enzymes to organelles.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Applied Microbiology and Biotechnology,Ecology, Evolution, Behavior and Systematics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3