Abstract
Abstract
Background
Crude glycerol coming from biodiesel production is an attractive carbon source for biological production of chemicals. The major impurity in preparations of crude glycerol is methanol, which is toxic for most microbes. Development of microbes, which would not only tolerate the methanol, but also use it as co-substrate, would increase the feasibility of bioprocesses using crude glycerol as substrate.
Results
To prevent methanol conversion to CO2 via formaldehyde and formate, the formaldehyde dehydrogenase (FLD) gene was identified in and deleted from Yarrowia lipolytica. The deletion strain was able to convert methanol to formaldehyde without expression of heterologous methanol dehydrogenases. Further, it was shown that expression of heterologous formaldehyde assimilating enzymes could complement the deletion of FLD. The expression of either 3-hexulose-6-phosphate synthase (HPS) enzyme of ribulose monosphosphate pathway or dihydroxyacetone synthase (DHAS) enzyme of xylulose monosphosphate pathway restored the formaldehyde tolerance of the formaldehyde sensitive Δfld1 strain.
Conclusions
In silico, the expression of heterologous formaldehyde assimilation pathways enable Y. lipolytica to use methanol as substrate for growth and metabolite production. In vivo, methanol was shown to be converted to formaldehyde and the enzymes of formaldehyde assimilation were actively expressed in this yeast. However, further development is required to enable Y. lipolytica to efficiently use methanol as co-substrate with glycerol.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Applied Microbiology and Biotechnology,Ecology, Evolution, Behavior and Systematics,Biotechnology
Reference53 articles.
1. Wolf K, editor. Nonconventional yeasts in biotechnology: a handbook. Berlin: Springer; 1996.
2. Coelho MAZ, Amaral PFF, Belo I. Yarrowia lipolytica: an industrial workhorse. In: Méndez-Vilas A, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology advances. Badajoz: Formatex Research Center; 2010.
3. Madzak C. Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol. 2015;99(11):4559–77. https://doi.org/10.1007/s00253-015-6624-z.
4. Xie D, Jackson EN, Zhu Q. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. Appl Microbiol Biotechnol. 2015;99:1599–610. https://doi.org/10.1007/s00253-014-6318-y.
5. Juszczyk P, Wojtatowicz M, Robak M, Lazar Z, Rywi A, Tomaszewska L, Rymowicz W. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenergy. 2013. https://doi.org/10.1016/j.biombioe.2012.11.021.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献