Ethanol-mediated upregulation of APOA1 gene expression in HepG2 cells is independent of de novo lipid biosynthesis

Author:

Khodja Youcef,Samuels Mark E.ORCID

Abstract

Abstract Background Moderate alcohol intake in human increases HDL-cholesterol, and has protective effects against cardiovascular disease (CVD). Although de novo lipid synthesis inhibitors are highly effective in lowering total and LDL-cholesterol they have only modest effects on raising HDL-C. A better understanding of the mechanism of ethanol-mediated HDL-C regulation could suggest new therapeutic approaches for CVD. Methods Human hepatoblastoma (HepG2) and colorectal epithelial adenocarcinoma (Caco-2) cells were incubated in the presence of varying concentrations of ethanol in the culture medium, with or without addition of de novo lipid synthesis (DNLS) inhibitors (atorvastatin and/or TOFA). ApoA1 protein was measured by Western blot, and RNA of lipid pathway genes APOA1, APOC3, APOA4, APOB100, HMGCR, LDLR, and SREBF2 by quantitative RT-PCR. Lipoproteins (VLDL, LDL, and HDL) and lipids were also monitored. Results Ethanol stimulated ApoA1 protein (both cytoplasmic and secreted) and APOA1 RNA levels in HepG2 cells in a dose sensitive way, with ~ 50% upregulation at 100 mM ethanol in the medium. The effect was not observed in intestinal-derived Caco-2 cells. DNLS inhibitors did not block the upregulation of ApoA1 RNA by ethanol; TOFA alone produced a modest increase in ApoA1 RNA. Ethanol had no effect on ABCA1 protein levels. Addition of ethanol to the cell medium led to modest increases in de novo synthesis of total cholesterol, cholesteryl esters and triglycerides, and as expected these increases were blocked when the lipid synthesis inhibitors were added. Ethanol stimulated a small increase in HDL and VLDL but not LDL synthesis. Ethanol in the cell medium also induced modest but measurable increases in the RNA of APOC3, APOA4, APOB, LDLR, and HMGCR genes. Unlike APOA1, induction of RNA from APOC3 and APOA4 was also observed in Caco-2 cells as well as HepG2 cells. Conclusion This study has verified the previously reported upregulation of APOA1 by exposure of HepG2, but not Caco-2 cells, to ethanol in the culture medium. It is shown for the first time that the effect is dependent on RNA polymerase II-mediated transcription, but not on de novo biosynthesis of cholesterol or fatty acids, and therefore is not a generalized metabolic response to ethanol exposure. Some other lipid pathway genes are also modulated by ethanol exposure of cells. The results reported here suggest that the proximal signaling molecule leading to increased APOA1 gene expression in response to ethanol exposure may be free acetate or acetyl-CoA. Take home Upregulation of ApoA1 gene expression in hepatoma cells in culture, upon exposure to moderate ethanol concentrations in the medium, occurs at the level of RNA and is not dependent on new cholesterol or fatty acid synthesis. The primary signaling molecule may be free acetate or acetyl-CoA. These results are important for understanding the mechanism by which moderate alcohol consumption leads to upregulation of serum HDL-cholesterol in humans, and suggests new approaches to targeting HDL as a risk factor for cardiovascular disease.

Funder

Genome Canada

Centre de Recherche du CHU Ste-Justine

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3