The effects of high-intensity interval training/moderate-intensity continuous training on the inhibition of fat accumulation in rats fed a high-fat diet during training and detraining

Author:

Liu Yu,Zhang Lukai,Wang Qiqi,Liu Hui,Zhu Xiangui,Li Hong,Zhang Haifeng

Abstract

Abstract Background Compared with moderate-intensity continuous training (MICT), high-intensity interval training (HIIT) has at least a comparable effect on inhibiting an increase in fat. However, few studies have been conducted to examine the effects of detraining on body fat in rats fed a high-fat diet. The present study aimed to compare the effects of 10 weeks of HIIT or MICT as well as 6 weeks of detraining on body fat in rats fed a high-fat diet. Methods After being fed a high-fat diet for 8 weeks, 54 female rats were randomly assigned to six groups: (1) CON-10, sedentary control for 10 weeks; (2) MICT-10, 10 weeks of MICT; (3) HIIT-10, 10 weeks of HIIT; (4) CON-16, sedentary control for 16 weeks; (5) MICT-16, 10 weeks of MICT followed by 6 weeks of training cessation; and (6) HIIT-16, 10 weeks of HIIT followed by 6 weeks of training cessation. The training was performed 5 days/week. The subcutaneous adipose tissue (inguinal; SCAT), visceral adipose tissue (periuterine; VAT) and serum lipid profile were analysed after 10 or 16 weeks. Adipose tissue triglyceride lipase (ATGL) protein expression in VAT was assessed by western blotting. Results HIIT-10 and MICT-10 prevented the increase in SCAT, VAT and serum lipid levels seen in the CON group. During the 6-week detraining period, HIIT continued to prevent the increase in adipose tissue mass observed in the CON group, whereas MICT at least maintained this inhibition. The inhibition of fat mass increase was mainly the result of preventing adipocyte hypertrophy. The HIIT-10 and HIIT-16 groups showed the highest ATGL protein expression. Conclusions HIIT has a comparable effect to MICT on inhibiting fat accumulation in female rats; however, the inhibition of SCAT and VAT increase by HIIT is superior to MICT after short-term training cessation. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3