Author:
Liu Yu,Zhang Lukai,Wang Qiqi,Liu Hui,Zhu Xiangui,Li Hong,Zhang Haifeng
Abstract
Abstract
Background
Compared with moderate-intensity continuous training (MICT), high-intensity interval training (HIIT) has at least a comparable effect on inhibiting an increase in fat. However, few studies have been conducted to examine the effects of detraining on body fat in rats fed a high-fat diet. The present study aimed to compare the effects of 10 weeks of HIIT or MICT as well as 6 weeks of detraining on body fat in rats fed a high-fat diet.
Methods
After being fed a high-fat diet for 8 weeks, 54 female rats were randomly assigned to six groups: (1) CON-10, sedentary control for 10 weeks; (2) MICT-10, 10 weeks of MICT; (3) HIIT-10, 10 weeks of HIIT; (4) CON-16, sedentary control for 16 weeks; (5) MICT-16, 10 weeks of MICT followed by 6 weeks of training cessation; and (6) HIIT-16, 10 weeks of HIIT followed by 6 weeks of training cessation. The training was performed 5 days/week. The subcutaneous adipose tissue (inguinal; SCAT), visceral adipose tissue (periuterine; VAT) and serum lipid profile were analysed after 10 or 16 weeks. Adipose tissue triglyceride lipase (ATGL) protein expression in VAT was assessed by western blotting.
Results
HIIT-10 and MICT-10 prevented the increase in SCAT, VAT and serum lipid levels seen in the CON group. During the 6-week detraining period, HIIT continued to prevent the increase in adipose tissue mass observed in the CON group, whereas MICT at least maintained this inhibition. The inhibition of fat mass increase was mainly the result of preventing adipocyte hypertrophy. The HIIT-10 and HIIT-16 groups showed the highest ATGL protein expression.
Conclusions
HIIT has a comparable effect to MICT on inhibiting fat accumulation in female rats; however, the inhibition of SCAT and VAT increase by HIIT is superior to MICT after short-term training cessation.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Chen K, Shen Z, Gu W, Lyu Z, Qi X, Mu Y, Ning Y. Prevalence of obesity and associated complications in China: a cross-sectional, real-world study in 15.8 million adults. Diabetes Obes Metab. 2023;25:3390–9.
2. Amanat S, Ghahri S, Dianatinasab A, Fararouei M, Dianatinasab M. Exercise and Type 2 diabetes. Adv Exp Med Biol. 2020;1228:91–105.
3. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41:459–71.
4. García-Hermoso A, Carmona-López MI, Saavedra JM, Escalante Y. Physical exercise, detraining and lipid profile in obese children: a systematic review. Arch Argent Pediatr. 2014;112:519–25.
5. Del Vecchio FB, Coswig VS, Cabistany LD, Orcy RB, Gentil P. Effects of exercise cessation on adipose tissue physiological markers related to fat regain: a systematic review. SAGE Open Med 2020, 8.